Jeolojik zaman cetveli

Vikipedi, özgür ansiklopedi
(Jeolojik devirler sayfasından yönlendirildi)
Eon/eonotemler ve era/eratemlere göre oranlanmış bir jeolojik zaman cetveli. Senozoyik dönem Sz. şeklinde kısaltılmıştır. Resim, yerküre tarihindeki kayda değer olayları ve yaşamın genel evrimini de göstermektedir.

Jeolojik zaman cetveli (veya ölçeği), Dünya'nın jeolojik kayıtlarına dayanan bir zaman temsil şeklidir. Jeolojik zaman cetveli, kronostratigrafiyi (jeolojik katmanları zamanla ilişkilendirme) ve jeokronolojiyi (kayaçların yaşını belirlemeyi amaçlayan bir jeoloji dalı) kullanan bir kronolojik tarihleme sistemidir. Özellikle yer bilimciler (jeologlar, paleontologlar, jeofizikçiler, jeokimyacılar ve paleoklimatologlar dahildir) tarafından jeolojik tarihteki olayların zamanlamasını ve ilişkilerini tanımlamak için kullanılır. Zaman cetveli, kayaç katmanlarının incelenmesi, bu katmanların ilişkilerinin gözlemlenmesi, litoloji, paleomanyetik özellikler ve fosiller gibi özelliklerin tanımlanmasıyla geliştirilmiştir. Standartlaştırılmış uluslararası jeolojik zaman birimlerinin tanımlanması, birincil amacı[1] jeolojik zaman bölümlerini gösteren Uluslararası Kronostratigrafik Tablo'daki (ICC)[2] global kronostratigrafik birimleri kesin olarak tanımlayan Uluslararası Jeolojik Bilimler Birliği'nin (IUGS) kurucu organı Uluslararası Stratigrafi Komisyonu'nun (ICS) sorumluluğundadır. Kronostratigrafik bölümler ise jeokronolojik birimleri tanımlamak için kullanılır.[2]

Bazı yerel ve bölgesel terimler hala kullanımda olsa da,[3] bu başlık altında sunulan jeolojik zaman çizelgesi, uluslararası bir standart kaynak olan Uluslararası Jeolojik Zaman Cetveli'ne dayandığından, ICS tarafından belirlenmiş isimlendirme, dönem ve renk kodlarına uymaktadır.[4][5]

Jeolojik zaman tablosu[değiştir | kaynağı değiştir]

Eonotem/

Üst zaman

Eratem/

Zaman

Sistem/

Dönem

Seri/

Devre

Kat/

Çağ

Ana olaylar Başlangıcı, milyon yıl önce

[not 1]

Fanerozoyik Senozoyik
[not 2]
Kuvaterner Holosen Meghaliyen 4,2 binyıl olayı, Avustronezyalıların genişlemesi, sanayiden salınan karbondioksitin artışı. 0,0042 *
Nortgripiyen 8,2 binyıl olayı, Holosen iklim optimumu. Deniz seviyesindeki yükseliş ile Doggerland ve Sundaland'in su altında kalır. Sahra çöl hâline gelir. Taş Çağı sonlanır ve kayıtlı tarih başlar. İnsanlık, Arktik Adaları'na ve Grönland'a genişler. 0,0082 *
Grönlandiyen İklim stabilize olur. Günümüzdeki interglasiyal ve Holosen yok oluşu başlar. Tarım başlar. İnsanlık, Yeşil Sahra, Arap Yarımadası, Uzak Kuzey ve Amerika (ana kara ve Karayipler) bölgelerine yayılır. 0,00117 ± 0,000099 *
Pleyistosen Üst/Geç ("Tarantiyen") Eemiyen interglasiyali ve Son Buzul Dönemi, Erken Dryas ile biter. Toba yanardağı patlar. Pleyistosen megafaunasının (son terör kuşları da dahil olmak üzere) nesli tükenir. İnsanlık, Yakın Okyanusya ve Amerika kıtalarına yayılır. 0,129
Orta Pleyistosen Orta Pleyistosen Geçişi gerçekleşir. Döngüler hâlinde büyük aralıklı 100 bin yıllık buzul dönemleri meydana gelir. Homo sapiens'in yükselişi. 0,774 *
Kalabriyen İklim daha da soğuk hâle gelir. Dev terör kuşlarının nesli tükenir. Homo erectus, Afrika-Avrasya boyunca yayılır. 1,8 *
Gelasiyen Kuvaterner buzullaşmasının başlangıcı ve dengesiz iklim.[6] Pleyistosen megafaunası ve Homo habilis'in yükselişi. 2,58 *
Neojen Pliyosen Piasenziyen Pleyistosen'e doğru hava soğukluğu yavaşça artarken Grönland buz örtüsü oluşur.[7] Atmosferdeki oksijen ve karbondioksit miktarı günümüz seviyelerine ulaşırken kara parçaları da bugünkü yerlerine gelir (örneğin Panama Kıstağı Kuzey ve Güney Amerika'ya katılarak fauna değişimini sağlar). Methateria alt sınıfından son kesesiz hayvanların nesli tükenir. Australopithecus Doğu Afrika'da yaygınlaşır; Taş Çağı başlar.[8] 3,6 *
Zankliyen Zankliyen'de Akdeniz Havzası suyla dolar. Miyosen'de gerçekleşen soğuma devam eder. İlk tektırnaklılar ve elephantimorpha grubu memelilieri ortaya çıkar. Ardipithecus bu çağda Afrika'dadır.[8] 5,333 *
Miyosen Messiniyen Mesinyen Tuz Krizi ile boş Akdeniz Havzası'nda hipertuzlu göller oluşur. Sahra'da çölleşme başlar. Buzul çağları ve Doğu Antarktika Buz Örtüsü'nün tekrar oluşmasıyla gerçekleşen kesintili ve ortalama sıcaklıklarda bir buz iklimi vardır. Choristoderes'in, son timsah olmayan krokodilomorfların ve kredontların nesli tükenir. Şempanze ve insanın ortak ataları, gorillerin atalarından ayrıldıktan sonra birbirinden gitgide ayrılır; Sahelanthropus ve Orrorin bu çağlarda Afrika'dadır. 7,246 *
Tortoniyen 11,63 *
Serravaliyen Orta Miyosen iklimsel optimumu geçici olarak sıcak bir iklim sağlar.[9] Orta Miyosen bozulması sırasında gerçekleşen nesil tükenmelerinde köpekbalığı çeşitliliği azalır. İlk su aygırları ve büyük insansı maymunlar ortaya çıkar. 13,82 *
Langiyen 15,97
Burdigaliyen Kuzey Yarımküre'de orojenez görülür. Yeni Zelanda'da Güney Alpleri'ni oluşturan Kaikoura Orojenez'i başlar. Geniş bölgelere yayılmış ormanlar, Miyosen sırasında devasa miktarlarda karbondioksiti çekerek atmosferdeki karbondioksit seviyesini 650 ppmv'den 100 ppmv'ye aşama aşama düşürür.[10][not 3] Modern kuş ve memeli familyaları tanınır hâle gelmeye başlar. Son ilkel balinanın nesli tükenir. Otlar her yeri kaplar. İnsanlar da dahil olmak üzere büyük insansı maymunlar ortaya çıkar.[11][12] Afrika-Arabistan, Avrasya'yla çarpışırak Alpin kuşağını meydana getirir ve Tetis Okyanusu'nu kapatır; bu sayede fauna değişimi sağlanır. Aynı zamanda Afrika-Arabistan, Afrika ve Batı Asya olmak üzere ikiye ayrılır. 20,44
Akitaniyen 23,03 *
Paleojen Oligosen Şattiyen Eosen–Oligosen kitlesel yok oluşu gerçekleşir. Antarktika'da buzullaşma başlar.[13] Fauna (özellikle memeliler, örneğin Macropodiformes ve yüzgeçayaklılar) hızlı bir şekilde evrimleşir ve çeşitlenir. Çiçekli bitkilerin modern çeşitleri kayda değer düzeyde evrim geçirir ve etrafa yayılır. Cimolestanlar, miyasidler ve kondilartların nesli tükenir. İlk modern, tam gelişmiş balinalar ortaya çıkar. 27,82
Rupeliyen 33,9 *
Eosen Priaboniyen Ilıman, soğuyan iklim görülür. Arkaik memeliler (örneğin kreodontlar, miyasoidler, "kondilartlar" vb.) bu devrede gelişmeye devam eder. Birkaç "modern" memeli familyası ortaya çıkar. İlkel balinalar ve deniz inekleri denizlere dönüşlerinden sonra çeşitlenir. Kuşlar çeşitlenmeye devam eder. İlk kelpler, iki ön dişliler, ayılar ve simiyenler görülür. Çokyumrulular ve leptictidanların bu devrede nesilleri tükenir. Antarktika'da tekrar buzullaşma olur ve buz tabakası geri gelir. Kuzey Amerika'daki Rocky Dağları'nda Laramide orojenezi biter ve Sevier orojenezi başlar. Yunanistan'da ve Ege Denizi'nde Helenik orojenez başlar. 37,71 *
Bartoniyen 41,2
Lütesiyen 47,8 *
İpresiyen Eosen İklim Optimum'una kadar iklimde ısınma görülür ve iki adet geçici küresel ısınma olayı (PETM ve ETM-2) gerçekleşir. Azolla olayı ile karbondioksit seviyeleri 3500 ppm'den 650 ppm'e düşerek uzun dönemli soğumaya sebep olur.[14][not 3] Hint altkıtası Avrasya ile çarpışır Himalaya orojenezi başlar (böylece biyotik değiş tokuş sağlandı). Aynı zamanda Avrasya, Kuzey Amerika'dan tamamen ayrılarak Kuzey Atlantik Okyanusu'nun oluşmasına sebep oldu. Güneydoğu Asya Adaları geri kalan Avrasya'dan ayrılır. İlk ötücü kuşlar, gevişgetirenler, pangolinler, yarasalar ve gerçek primatlar bu çağdadır. 56 *
Paleosen Tanesiyen Senozoyik zaman, Chicxulub çarpışmasıyla tüm kuş olmayan dinozorların, pterozorların, çoğu deniz sürüngenin, birçok omurgalının (örneğin Lavrasya'daki keseliler), kafadanbacaklıların (sadece Nautilidae ve Coleoidea kurtulmuştur) ve omurgasız hayvanların neslinin tükenmesine sebep olan Kretase-Paleojen yok oluşuyla başlar. İklim bu devrede tropiktir. Memeliler ve kuşlar (kanatlılar), yok oluşu takiben (deniz devrimi dururken) hızla bir dizi soya ayrılarak çeşitlenir (deniz devrimi ise durmuştur). Çokyumrulular ve ilk kemirgenler yaygın hâle gelir. İlk büyük kuşlar (örneğin ratite ailesinden kuşlar ve terör kuşları) ve büyük memeliler ortaya çıkar. Avrupa ve Asya'da Alpin orojenezi başlar. İlk plesiadapiformlar (kök-primatlar) ve hortumlular (ayı veya küçük su aygırı büyüklüğünde) ortaya çıkar. Bazı keseliler Avustralya'ya göçer. 59,2 *
Selandiyen 61,6 *
Daniyen 66 *
Mezozoyik Kretase Üst/Geç Maastrihtiyen Flowering plants proliferate (after developing many features since the Karbonifer), along with new types of insects, while other seed plants (gymnosperms and seed ferns) decline. More modern teleost fish begin to appear. Ammonoids, belemnites, rudist bivalves, sea urchins and sponges all common. Many new types of dinosaurs (e.g. tyrannosaurs, titanosaurs, hadrosaurs, and ceratopsids) evolve on land, while crocodilians appear in water and probably cause the last temnospondyls to die out; and mosasaurs and modern types of sharks appear in the sea. The revolution started by marine reptiles and sharks reaches its peak, though ichthyosaurs vanish few million years after being heavily reduced at the Bonarelli Event. Toothed and toothless avian birds coexist with pterosaurs. Modern monotremes, metatherian (including marsupials, who migrate to South America) and eutherian (including placentals, leptictidans and cimolestans) mammals appear while the last non-mammalian cynodonts die out. First terrestrial crabs. Many snails become terrestrial. Further breakup of Gondwana creates South America, Afro-Arabia, Antarctica, Oceania, Madagascar, Greater India, and the South Atlantic, Indian and Antarctic Oceans and the islands of the Indian (and some of the Atlantic) Ocean. Beginning of Laramide and Sevier Orogenies of the Rocky Mountains. Atmospheric oxygen and carbon dioxide levels similar to present day. Acritarchs disappear. Climate initially warm, but later it cools. 72,1 ± 0,2 *
Kampaniyen 83,6 ± 0,2 *
Santoniyen 86,3 ± 0,5 *
Koniasiyen 89,8 ± 0,5 *
Turoniyen 93,9 *
Senomaniyen 100,5 *
Alt/Erken Albiyen ~113 *
Apsiyen ~121,4
Barremiyen ~129,4
Hotriviyen ~132,6 *
Valanjiniyen ~139,8
Berriaziyen ~145
Jura Üst/Geç Titoniyen Climate becomes humid again. Gymnosperms (especially conifers, cycads and cycadeoids) and ferns common. Dinosaurs, including sauropods, carnosaurs, stegosaurs and coelurosaurs, become the dominant land vertebrates. Mammals diversify into shuotheriids, australosphenidans, eutriconodonts, multituberculates, symmetrodonts, dryolestids and boreosphenidans but mostly remain small. First birds, lizards, snakes and turtles. First brown algae, rays, shrimps, crabs and lobsters. Parvipelvian ichthyosaurs and plesiosaurs diverse. Rhynchocephalians throughout the world. Bivalves, ammonoids and belemnites abundant. Sea urchins very common, along with crinoids, starfish, sponges, and terebratulid and rhynchonellid brachiopods. Breakup of Pangaea into Laurasia and Gondwana, with the latter also breaking into two main parts; the Pacific and Arctic Oceans form. Tethys Ocean forms. Nevadan orogeny in North America. Rangitata and Cimmerian orogenies taper off. Atmospheric CO2 levels 3–4 times the present-day levels (1200–1500 ppmv, compared to today's 400 ppmv[14][note 1]). Crocodylomorphs (last pseudosuchians) seek out an aquatic lifestyle. Mezozoyik marine revolution continues from late Triyas. Tentaculitans disappear. 152,1 ± 0,9
Kimmericiyen 157,3 ± 1,0
Oksfordiyen 163,5 ± 1,0
Orta Kalloviyen 166,1 ± 1,2
Batoniyen 168,3 ± 1,3 *
Bajosiyen 170,3 ± 1,4 *
Aaleniyen 174,1 ± 1,0 *
Alt/Erken Toarsiyen 182,7 ± 0,7 *
Pliyensbahiyen 190,8 *
Sinemuriyen 199,3 ± 0,3 *
Hettanjiyen 201,3 ± 0,2 *
Triyas Üst/Geç Resiyen Archosaurs dominant on land as pseudosuchians and in the air as pterosaurs. Dinosaurs also arise from bipedal archosaurs. Ichthyosaurs and nothosaurs (a group of sauropterygians) dominate large marine fauna. Cynodonts become smaller and nocturnal, eventually becoming the first true mammals, while other remaining synapsids die out. Rhynchosaurs (archosaur relatives) also common. Seed ferns called Dicroidium remained common in Gondwana, before being replaced by advanced gymnosperms. Many large aquatic temnospondyl amphibians. Ceratitidan ammonoids extremely common. Modern corals and teleost fish appear, as do many modern insect orders and suborders. First starfish. Andean Orogeny in South America. Cimmerian Orogeny in Asia. Rangitata Orogeny begins in New Zealand. Hunter-Bowen Orogeny in Northern Australia, Queensland and New South Wales ends, (c. 260–225 Ma). Karniyen pluvial event occurs around 234-232 Ma, allowing the first dinosaurs and lepidosaurs (including rhynchocephalians) to radiate. Triyas-Jura extinction event occurs 201 Ma, wiping out all conodonts and the last parareptiles, many marine reptiles (e.g. all sauropterygians except plesiosaurs and all ichthyosaurs except parvipelvians), all crocopodans except crocodylomorphs, pterosaurs, and dinosaurs, and many ammonoids (including the whole Ceratitida), bivalves, brachiopods, corals and sponges. First diatoms.[15] ~208,5
Noriyen ~227
Karniyen ~237 *
Orta Ladiniyen ~242 *
Aniziyen ~247,2
Alt/Erken Olenekiyen ~251,2
İnduyen 251,902 ± 0,024 *
Paleozoyik Permiyen Lopingiyen Çangsingiyen Landmasses unite into supercontinent Pangaea, creating the Urals, Ouachitas and Appalachians, among other mountain ranges (the superocean Panthalassa or Proto-Pacific also forms). End of Permo-Karbonifer glaciation. Hot and dry climate. A possible drop in oxygen levels. Synapsids (pelycosaurs and therapsids) become widespread and dominant, while parareptiles and temnospondyl amphibians remain common, with the latter probably giving rise to modern amphibians in this period. In the mid-Permiyen, lycophytes are heavily replaced by ferns and seed plants. Beetles and flies evolve. The very large arthropods and non-tetrapod tetrapodomorphs go extinct. Marine life flourishes in warm shallow reefs; productid and spiriferid brachiopods, bivalves, forams, ammonoids (including goniatites), and orthoceridans all abundant. Crown reptiles arise from earlier diapsids, and split into the ancestors of lepidosaurs, kuehneosaurids, choristoderes, archosaurs, testudinatans, ichthyosaurs, thalattosaurs, and sauropterygians. Cynodonts evolve from larger therapsids. Olson's Extinction (273 Ma), End-Kapitaniyen extinction (260 Ma), and Permiyen-Triyas extinction event (252 Ma) occur one after another: more than 80% of life on Earth becomes extinct in the lattermost, including most retarian plankton, corals (Tabulata and Rugosa die out fully), brachiopods, bryozoans, gastropods, ammonoids (the goniatites die off fully), insects, parareptiles, synapsids, amphibians, and crinoids (only articulates survived), and all eurypterids, trilobites, graptolites, hyoliths, edrioasteroid crinozoans, blastoids and acanthodians. Ouachita and Innuitian orogenies in North America. Uralian orogeny in Europe/Asia tapers off. Altaid orogeny in Asia. Hunter-Bowen Orogeny on Australian continent begins (c. 260–225 Ma), forming the MacDonnell Ranges. 254,14 ± 0,07 *
Vuçepingiyen 259,51 ± 0,21 *
Guadalupiyen Kapitaniyen 264,28 ± 0,16 *
Vordiyen 266,9 ± 0,4 *
Rodiyen 273,01 ± 0,14 *
Sisuraliyen Kunguriyen 283,5 ± 0,6
Artinskiyen 290,1 ± 0,26 *
Sakmariyen 293,52 ± 0,17 *
Asseliyen 298,9 ± 0,15 *
Karbonifer
[note 2]
Pensilvaniyen
[note 3]
Gijeliyen Winged insects radiate suddenly; some (esp. Protodonata and Palaeodictyoptera) of them as well some millipedes and scorpions become very large. First coal forests (scale trees, ferns, club trees, giant horsetails, Cordaites, etc.). Higher atmospheric oxygen levels. Ice Age continues to the Early Permiyen. Goniatites, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. First woodlice. Testate forams proliferate. Euramerica collides with Gondwana and Siberia-Kazakhstania, the latter of which forms Laurasia and the Uralian orogeny. Variscan orogeny continues (these collisions created orogenies, and ultimately Pangaea). Amphibians (e.g. temnospondyls) spread in Euramerica, with some becoming the first amniotes. Karbonifer Rainforest Collapse occurs, initiating a dry climate which favors amniotes over amphibians. Amniotes diversify rapidly into synapsids, parareptiles, cotylosaurs, protorothyridids and diapsids. Rhizodonts remained common before they died out by the end of the period. First sharks. 303,7
Kasımoviyen 307 ± 0,1
Moskoviyen 315,2 ± 0,2
Başkiriyen 323,2 *
Misisipiyen
[note 3]
Serpukoviyen Large lycopodian primitive trees flourish and amphibious eurypterids live amid coal-forming coastal swamps, radiating significantly one last time. First gymnosperms. First holometabolous, paraneopteran, polyneopteran, odonatopteran and ephemeropteran insects and first barnacles. First five-digited tetrapods (amphibians) and land snails. In the oceans, bony and cartilaginous fishes are dominant and diverse; echinoderms (especially crinoids and blastoids) abundant. Corals, bryozoans, orthoceridans, goniatites and brachiopods (Productida, Spiriferida, etc.) recover and become very common again, but trilobites and nautiloids decline. Glaciation in East Gondwana continues from Late Devoniyen. Tuhua Orogeny in New Zealand tapers off. Some lobe finned fish called rhizodonts become abundant and dominant in freshwaters. Siberia collides with a different small continent, Kazakhstania. 330,9 ± 0,2
Vizeyen 346,7 ± 0,4 *
Turneziyen 358,9 ± 0,4 *
Devoniyen Üst/Geç Fameniyen First lycopods, ferns, seed plants (seed ferns, from earlier progymnosperms), first trees (the progymnosperm Archaeopteris), and first winged insects (palaeoptera and neoptera). Strophomenid and atrypid brachiopods, rugose and tabulate corals, and crinoids are all abundant in the oceans. First fully coiled cephalopods (Ammonoidea and Nautilida, independently) with the former group very abundant (especially goniatites). Trilobites and ostracoderms decline, while jawed fishes (placoderms, lobe-finned and ray-finned bony fish, and acanthodians and early cartilaginous fish) proliferate. Some lobe finned fish transform into digited fishapods, slowly becoming amphibious. The last non-trilobite artiopods die off. First decapods (like prawns) and isopods. Pressure from jawed fishes cause eurypterids to decline and some cephalopods to lose their shells while anomalocarids vanish. "Old Red Continent" of Euramerica persists after forming in the Caledonian orogeny. Beginning of Acadian Orogeny for Anti-Atlas Mountains of North Africa, and Appalachian Mountains of North America, also the Antler, Variscan, and Tuhua orogenies in New Zealand. A series of extinction events, including the massive Kellwasser and Hangenberg ones, wipe out many acritarchs, corals, sponges, molluscs, trilobites, eurypterids, graptolites, brachiopods, crinozoans (e.g. all cystoids), and fish, including all placoderms and ostracoderms. 372,2 ± 1,6 *
Frasniyen 382,7 ± 1,6 *
Orta Jivesiyen 387,7 ± 0,8 *
Eyfeliyen 393,3 ± 1,2 *
Alt/Erken Emsiyen 407,6 ± 2,6 *
Pragiyen 410,8 ± 2,8 *
Lohkoviyen 419,2 ± 3,2 *
Siluriyen Pridoli Ozone layer thickens. First vascular plants and fully terrestrialized arthropods: myriapods, hexapods (including insects), and arachnids. Eurypterids diversify rapidly, becoming widespread and dominant. Cephalopods continue to flourish. True jawed fishes, along with ostracoderms, also roam the seas. Tabulate and rugose corals, brachiopods (Pentamerida, Rhynchonellida, etc.), cystoids and crinoids all abundant. Trilobites and molluscs diverse; graptolites not as varied. Three minor extinction events. Some echinoderms go extinct. Beginning of Caledonian Orogeny (collision between Laurentia, Baltica and one of the formerly small Gondwanan terranes) for hills in England, Ireland, Wales, Scotland, and the Scandinavian Mountains. Also continued into Devoniyen period as the Acadian Orogeny, above (thus Euramerica forms). Taconic Orogeny tapers off. Icehouse period ends late in this period after starting in Late Ordovisiyen. Lachlan Orogeny on Australian continent tapers off. 423 ± 2,3 *
Ludlov Ludfordiyen 425,6 ± 0,9 *
Gorstiyen 427,4 ± 0,5 *
Venlok Homeriyen 430,5 ± 0,7 *
Sheinwoodian 433,4 ± 0,8 *
Landoveri Telisiyen 438,5 ± 1,1 *
Aroniyen 440,8 ± 1,2 *
Ruddaniyen 443,8 ± 1,5 *
Ordovisiyen Üst/Geç Hirnansiyen The Great Ordovisiyen Biodiversification Event occurs as plankton increase in number: invertebrates diversify into many new types (especially brachiopods and molluscs; e.g. long straight-shelled cephalopods like the long lasting and diverse Orthocerida). Early corals, articulate brachiopods (Orthida, Strophomenida, etc.), bivalves, cephalopods (nautiloids), trilobites, ostracods, bryozoans, many types of echinoderms (blastoids, cystoids, crinoids, sea urchins, sea cucumbers, and star-like forms, etc.), branched graptolites, and other taxa all common. Acritarchs still persist and common. Cephalopods become dominant and common, with some trending toward a coiled shell. Anomalocarids decline. Mysterious tentaculitans appear. First eurypterids and ostracoderm fish appear, the latter probably giving rise to the jawed fish at the end of the period. First uncontroversial terrestrial fungi and fully terrestrialized plants. Ice age at the end of this period, as well as a series of mass extinction events, killing off some cephalopods and many brachiopods, bryozoans, echinoderms, graptolites, trilobites, bivalves, corals and conodonts. 445,2 ± 1,4 *
Katiyen 453 ± 0,7 *
Sandbiyen 458,4 ± 0,9 *
Orta Darriviliyen 467,3 ± 1,1 *
Dapingiyen 470 ± 1,4 *
Alt/Erken Floyen
(eski adıyla Arenig)
477,7 ± 1,4 *
Tremadosiyen 485,4 ± 1,9 *
Kambriyen Frongiyen Kat 10 Major diversification of (fossils mainly show bilaterian) life in the Cambrian Explosion as oxygen levels increase. Numerous fossils; most modern animal phyla (including arthropods, molluscs, annelids, echinoderms, hemichordates and chordates) appear. Reef-building archaeocyathan sponges initially abundant, then vanish. Stromatolites replace them, but quickly fall prey to the Agronomic revolution, when some animals started burrowing through the microbial mats (affecting some other animals as well). First artiopods (including trilobites), priapulid worms, inarticulate brachiopods (unhinged lampshells), hyoliths, bryozoans, graptolites, pentaradial echinoderms (e.g. blastozoans, crinozoans and eleutherozoans), and numerous other animals. Anomalocarids are dominant and giant predators, while many Ediyakaran fauna die out. Crustaceans and molluscs diversify rapidly. Prokaryotes, protists (e.g., forams), algae and fungi continue to present day. First vertebrates from earlier chordates. Petermann Orogeny on the Australian continent tapers off (550–535 Ma). Ross Orogeny in Antarctica. Delamerian Orogeny (c. 514–490 Ma) on Australian continent. Some small terranes split off from Gondwana. Atmospheric CO2 content roughly 15 times present-day (Holocene) levels (6000 ppm compared to today's 400 ppm)[14][note 1] Arthropods and streptophyta start colonizing land. 3 extinction events occur 517, 502 & 488 Ma, the first and last of which wipe out many of the anomalocarids, artiopods, hyoliths, brachiopods, molluscs, and conodonts (early jawless vertebrates). ~489,5
Jiyangşaniyen ~494 *
Payibiyen ~497 *
Miaolingiyen Guzhangiyen ~500,5 *
Drumiyen ~504,5 *
Vuliuyan ~509
Seri 2 Kat 4 ~514
Kat 3 ~521
Terrenöviyen Kat 2 ~529
Fortuniyen ~538,8 ± 0,2 *
Proterozoyik Neoproterozoyik Ediyakaran Good fossils of primitive animals. Ediyakaran biota flourish worldwide in seas, possibly appearing after an explosion, possibly caused by a large-scale oxidation event.[16] First vendozoans (unknown affinity among animals), cnidarians and bilaterians. Enigmatic vendozoans include many soft-jellied creatures shaped like bags, disks, or quilts (like Dickinsonia). Simple trace fossils of possible worm-like Trichophycus, etc.Taconic Orogeny in North America. Aravalli Range orogeny in Indian subcontinent. Beginning of Pan-African Orogeny, leading to the formation of the short-lived Ediyakaran supercontinent Pannotia, which by the end of the period breaks up into Laurentia, Baltica, Siberia and Gondwana. Petermann Orogeny forms on Australian continent. Beardmore Orogeny in Antarctica, 633–620 Ma. Ozone layer forms. An increase in oceanic mineral levels. ~635 *
Kriyojeniyen Possible "Snowball Earth" period. Fossils still rare. Late Ruker / Nimrod Orogeny in Antarctica tapers off. First uncontroversial animal fossils. First hypothetical terrestrial fungi[17] and streptophyta.[18] ~720[not 4]
Toniyen Final assembly of Rodinia supercontinent occurs in early Toniyen, with breakup beginning c. 800 Ma. Sveconorwegian orogeny ends. Grenville Orogeny tapers off in North America. Lake Ruker / Nimrod Orogeny in Antarctica, 1,000 ± 150 Ma. Edmundian Orogeny (c. 920–850 Ma), Gascoyne Complex, Western Australia. Deposition of Adelaide Superbasin and Centralian Superbasin begins on Australian continent. First hypothetical animals (from holozoans) and terrestrial algal mats. Many endosymbiotic events concerning red and green algae occur, transferring plastids to ochrophyta (e.g. diatoms, brown algae), dinoflagellates, cryptophyta, haptophyta, and euglenids (the events may have begun in the MesoProterozoyik)[19] while the first retarians (e.g. forams) also appear: eukaryotes diversify rapidly, including algal, eukaryovoric and biomineralized forms. Trace fossils of simple multi-celled eukaryotes. 1000[not 4]
Mezoproterozoyik Steniyen Narrow highly metamorphic belts due to orogeny as Rodinia forms, surrounded by the Pan-African Ocean. Sveconorwegian orogeny starts. Late Ruker / Nimrod Orogeny in Antarctica possibly begins. Musgrave Orogeny (c. 1,080–), Musgrave Block, Central Australia. Stromatolites decline as algae proliferate. 1200[not 4]
Ektasiyen Platform covers continue to expand. Algal colonies in the seas. Grenville Orogeny in North America. Columbia breaks up. 1400[not 4]
Kalimiyen Platform covers expand. Barramundi Orogeny, McArthur Basin, Northern Australia, and Isan Orogeny, y. 1,600 Ma, Mount Isa Block, Queensland. First archaeplastidans (the first eukaryotes with plastids from cyanobacteria; e.g. red and green algae) and opisthokonts (giving rise to the first fungi and holozoans). Acritarchs (remains of marine algae possibly) start appearing in the fossil record. 1600[not 4]
Paleoproterozoyik Stateriyen First uncontroversial eukaryotes: protists with nuclei and endomembrane system. Columbia forms as the second undisputed earliest supercontinent. Kimban Orogeny in Australian continent ends. Yapungku Orogeny on Yilgarn craton, in Western Australia. Mangaroon Orogeny, 1,680–1,620 Ma, on the Gascoyne Complex in Western Australia. Kararan Orogeny (1,650 Ma), Gawler Craton, South Australia. Oxygen levels drop again. 1800[not 4]
Orosiriyen The atmosphere becomes much more oxygenic while more cyanobacterial stromatolites appear. Vredefort and Sudbury Basin asteroid impacts. Much orogeny. Penokean and Trans-Hudsonian Orogenies in North America. Early Ruker Orogeny in Antarctica, 2,000–1,700 Ma. Glenburgh Orogeny, Glenburgh Terrane, Australian continent y. 2,005–1,920 Ma. Kimban Orogeny, Gawler craton in Australian continent begins. 2050[not 4]
Riyasiyen Bushveld Igneous Complex forms. Huronian glaciation. First hypothetical eukaryotes. Multicellular Francevillian biota. Kenorland disassembles. 2300[not 4]
Sideriyen Great Oxidation Event (due to cyanobacteria) increases oxygen. Sleaford Orogeny on Australian continent, Gawler Craton 2,440–2,420 Ma. 2500[not 4]
Arkeen Neoarkeen Stabilization of most modern cratons; possible mantle overturn event. Insell Orogeny, 2,650 ± 150 Ma. Abitibi greenstone belt in present-day Ontario and Quebec begins to form, stabilizes by 2,600 Ma. First uncontroversial supercontinent, Kenorland, and first terrestrial prokaryotes. 2800[not 4]
Mesoarkeen First stromatolites (probably colonial phototrophic bacteria, like cyanobacteria). Oldest macrofossils. Humboldt Orogeny in Antarctica. Blake River Megacaldera Complex begins to form in present-day Ontario and Quebec, ends by roughly 2,696 Ma. 3200[not 4]
Paleoarkeen Prokaryotic archaea (e.g. methanogens) and bacteria (e.g. cyanobacteria) diversify rapidly, along with early viruses. First known phototrophic bacteria. Oldest definitive microfossils. First microbial mats. Oldest cratons on Earth (such as the Canadian Shield and the Pilbara Craton) may have formed during this period.[note 4] Rayner Orogeny in Antarctica. 3600[not 4]
Eoarkeen First uncontroversial living organisms: at first protocells with RNA-based genes around 4000 Ma, after which true cells (prokaryotes) evolve along with proteins and DNA-based genes around 3800 Ma. The end of the Late Heavy Bombardment. Napier Orogeny in Antarctica, 4,000 ± 200 Ma. 4000[not 4]
Hadeen
[note 5]
Formation of protolith of the oldest known rock (Acasta Gneiss) c. 4,031 to 3,580 Ma.[20][21] Possible first appearance of plate tectonics. First hypothetical life forms. End of the Early Bombardment Phase. Oldest known mineral (Zircon, 4,404 ± 8 Ma).[22] Asteroids and comets bring water to Earth, forming the first oceans. Formation of Moon (4,533 to 4,527 Ma), probably from a giant impact. Formation of Earth (4,570 to 4,567.17 Ma) 4600[not 4]

Notlar[değiştir | kaynağı değiştir]

  1. ^ Tarihler ve belirsizlik oranları, Uluslararası Stratigrafi Komisyonu'nun hazırladığı Uluslararası Kronostratigrafik Çizelge'den alınmıştır (v2022/02). Yıldızlar (*), bir Küresel Sınır Stratotip Kesiti ve Noktası'nın uluslararası kabul gördüğü sınırları göstermektedir.
  2. ^ Tersiyer, 66 myö ile 2,6 myö aralığında bulunan ve artık kullanılmayan bir jeolojik sistem/dönemdir. Güncel ICC'de kesin bir karşılığı olmamakla birlikte yaklaşık olarak Paleojen ve Neojen dönemlerinin birleşimi kadarlık bir zaman aralığındadır.
  3. ^ a b Bu konuda daha fazla bilgi için Dünya atmosferi#Dünya atmosferinin evrimi, Dünya atmosferindeki karbondioksit ve iklim değişikliği maddelerine bakınız. ~550, 65 ve 5 milyon önceki CO2 seviyelerini gösteren özel grafikler sırasıyla Dosya:Phanerozoic Carbon Dioxide.png, Dosya:65 Myr Climate Change.png, Dosya:Five Myr Climate Change.png resimlerinden görülebilir.
  4. ^ a b c d e f g h i j k l m n Mutlak yaşa göre belirlenmiştir (bkz. Küresel Standart Stratigrafik Yaş).

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ "Statutes". stratigraphy.org. International Commission on Stratigraphy. 23 Mart 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Nisan 2022. 
  2. ^ a b Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. (1 Eylül 2013). "The ICS International Chronostratigraphic Chart". Episodes (İngilizce) (updated bas.). 36 (3): 199-204. doi:10.18814/epiiugs/2013/v36i3/002. ISSN 0705-3797. 3 Mayıs 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Haziran 2022. 
  3. ^ Van Kranendonk, Martin J.; Altermann, Wladyslaw; Beard, Brian L.; Hoffman, Paul F.; Johnson, Clark M.; Kasting, James F.; Melezhik, Victor A.; Nutman, Allen P. (2012), "A Chronostratigraphic Division of the Precambrian", The Geologic Time Scale (İngilizce), Elsevier, ss. 299–392, doi:10.1016/b978-0-444-59425-9.00016-0, ISBN 978-0-444-59425-9, 6 Mayıs 2021 tarihinde kaynağından arşivlendi, erişim tarihi: 2022-04-05 
  4. ^ "Statutes". stratigraphy.org. International Commission on Stratigraphy. 23 Mart 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Nisan 2022. 
  5. ^ "International Commission on Stratigraphy". International Geological Time Scale. 24 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Haziran 2022. 
  6. ^ Hoag, Colin; Svenning, Jens-Christian (17 Ekim 2017). "African Environmental Change from the Pleistocene to the Anthropocene". Annual Review of Environment and Resources (İngilizce). 42 (1): 27-54. doi:10.1146/annurev-environ-102016-060653. ISSN 1543-5938. 1 Mayıs 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Haziran 2022. 
  7. ^ Bartoli, G; Sarnthein, M; Weinelt, M; Erlenkeuser, H; Garbe-Schönberg, D; Lea, D.W (2005). "Final closure of Panama and the onset of northern hemisphere glaciation". Earth and Planetary Science Letters. 237 (1–2): 33-44. Bibcode:2005E&PSL.237...33B. doi:10.1016/j.epsl.2005.06.020.  Geçersiz |doi-access=free (yardım)
  8. ^ a b Tyson, Peter (October 2009). "NOVA, Aliens from Earth: Who's who in human evolution". PBS. 31 Mart 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ekim 2009. 
  9. ^ Gannon, Colin (26 Nisan 2013). "Understanding the Middle Miyosen Climatic Optimum: Evaluation of Deuterium Values (δD) Related to Precipitation and Temperature". Honors Projects in Science and Technology. 10 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Haziran 2022. 
  10. ^ Royer, Dana L. (2006). "CO2-forced climate thresholds during the Phanerozoic" (PDF). Geochimica et Cosmochimica Acta. 70 (23): 5665-75. Bibcode:2006GeCoA..70.5665R. doi:10.1016/j.gca.2005.11.031. 27 Eylül 2019 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 6 Ağustos 2015. 
  11. ^ "Here's What the Last Common Ancestor of Apes and Humans Looked Like". Live Science. 10 Ağustos 2017. 2 Temmuz 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Haziran 2022. 
  12. ^ Nengo, Isaiah; Tafforeau, Paul; Gilbert, Christopher C.; Fleagle, John G.; Miller, Ellen R.; Feibel, Craig; Fox, David L.; Feinberg, Josh; Pugh, Kelsey D.; Berruyer, Camille; Mana, Sara (2017). "New infant cranium from the African Miocene sheds light on ape evolution". Nature (İngilizce). 548 (7666): 169-174. doi:10.1038/nature23456. ISSN 0028-0836. PMID 28796200. 12 Mayıs 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Haziran 2022. 
  13. ^ Deconto, Robert M.; Pollard, David (2003). "Rapid Senozoyik glaciation of Antarctica induced by declining atmospheric CO2". Nature. 421 (6920): 245-249. Bibcode:2003Natur.421..245D. doi:10.1038/nature01290. PMID 12529638. 
  14. ^ a b c Royer, Dana L. (2006). "CO2-forced climate thresholds during the Phanerozoic" (PDF). Geochimica et Cosmochimica Acta. 70 (23): 5665-75. Bibcode:2006GeCoA..70.5665R. doi:10.1016/j.gca.2005.11.031. 27 Eylül 2019 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 6 Ağustos 2015. 
  15. ^ Medlin, L. K.; Kooistra, W. H. C. F.; Gersonde, R.; Sims, P. A.; Wellbrock, U. (1997). "Is the origin of the diatoms related to the end-Permiyen mass extinction?". Nova Hedwigia. 65 (1–4): 1-11. doi:10.1127/nova.hedwigia/65/1997/1. hdl:10013/epic.12689. 
  16. ^ Williams, Joshua J.; Mills, Benjamin J. W.; Lenton, Timothy M. (2019). "A tectonically driven Ediyakaran oxygenation event". Nature Communications (İngilizce). 10 (1): 2690. doi:10.1038/s41467-019-10286-x. ISSN 2041-1723. PMC 6584537 $2. PMID 31217418. 
  17. ^ Naranjo‐Ortiz, Miguel A.; Gabaldón, Toni (25 Nisan 2019). "Fungal evolution: major ecological adaptations and evolutionary transitions". Biological Reviews of the Cambridge Philosophical Society. Cambridge Philosophical Society (Wiley). 94 (4): 1443-1476. doi:10.1111/brv.12510. ISSN 1464-7931. PMID 31021528. 
  18. ^ Žárský, Jakub; Žárský, Vojtěch; Hanáček, Martin; Žárský, Viktor (27 Ocak 2022). "Kriyojeniyen Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split". Frontiers in Plant Science. 12: 735020. doi:10.3389/fpls.2021.735020. ISSN 1664-462X. PMC 8829067 $2. PMID 35154170.  Geçersiz |doi-access=free (yardım)
  19. ^ Yoon, Hwan Su; Hackett, Jeremiah D.; Ciniglia, Claudia; Pinto, Gabriele; Bhattacharya, Debashish (2004). "A Molecular Timeline for the Origin of Photosynthetic Eukaryotes". Molecular Biology and Evolution (İngilizce). 21 (5): 809-818. doi:10.1093/molbev/msh075. ISSN 1537-1719. PMID 14963099. 21 Ocak 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Haziran 2022. 
  20. ^ Bowring, Samuel A.; Williams, Ian S. (1999). "Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology. 134 (1): 3. Bibcode:1999CoMP..134....3B. doi:10.1007/s004100050465. 
  21. ^ Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Maruyama, Shigenori (2007), "Chapter 3.1 The Early Arkeen Acasta Gneiss Complex: Geological, Geochronological and Isotopic Studies and Implications for Early Crustal Evolution", Developments in Pre-Kambriyen Geology (İngilizce), Elsevier, 15, ss. 127–147, doi:10.1016/s0166-2635(07)15031-3, ISBN 978-0-444-52810-0, 29 Haziran 2018 tarihinde kaynağından arşivlendi, erişim tarihi: 2022-05-01 
  22. ^ Wilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago". Nature (İngilizce). 409 (6817): 175-178. doi:10.1038/35051550. ISSN 0028-0836. PMID 11196637. 23 Nisan 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Haziran 2022. 

Konuyla ilgili yayınlar[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]

Vikikitap
Vikikitapta bu konu hakkında daha fazla bilgi var:


Kaynak hatası: <ref> "note" adında grup ana etiketi bulunuyor, ancak <references group="note"/> etiketinin karşılığı bulunamadı (Bkz: Kaynak gösterme)