Olasılık dağılımı

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı tıpatıp bire veya yüzde 100'e eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi olay olarak ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

Bir sürekli olasılık dağılımı değerleri bir sürekli olan açıklıkta tanımlar ve tek bir değer için olasılık sıfıra eşittir. Örneğin bir okçuluk sahasında atılan bir okun hedef tahtasında tek bir noktaya düşmesi olasılığı sıfırdır; çünkü geometri kuramına göre bir noktanın ne eni ne de boyu bulunmaktadır ve hedef üzerindeki varsayılan nokta sonsuz küçüklüktedir. Buna karşılık, atılan okun hedef üzerinde belli bir alana düşmesi olasılığı bulunabilir. Böylece hedefe ok atma olayında hedef tahtasının her bir alanına okun düşme olasılığını tanımlayan bir düzgün fonksiyon olasılık yoğunluk fonksiyonu (ODF), bu olayın olasılık dağılımını tanımlar. Olasılık dağılım fonksiyonun altında kalan alan (yani integrali), hedef tahtasının tümünü (belki de yakınındaki bir duvar parçasını da) kaplayan alanı kapsadığı için, bire eşit olacaktır; çünkü atılan okun mutlaka bir alana gitmesi gerekmektedir.

Olasılık dağılımı ve tanımladığı rassal değişkenler matematik biliminin ana bölümünün alt dalları olan olasılık kuramı ve istatistik bilim kollarının içerdikleri önemli alt bölümleridir. Olasılık dağılımları olasılık incelemesi ve olayların olasığının tanımlanması için kullanılan modellerdir. Ancak olasılık dağılımlarını kullanmak için matematik işlemler yapılırken ortaya çok önemli matematiksel zorluklar çıkmaktadır; çünkü birçok standart aritmetiksel ve cebirsel işlemlerinin olasılık dağılımları için uygulanması mümkün olmamaktadır.

Kesin tanımlamalar[değiştir | kaynağı değiştir]

Olasılık kuramına göre, her bir rassal değişkene durum uzayında, bir olasılık dağılımı olarak tanımlanan, bir fonksiyon bağlanmıştır. Bu olasılık fonksiyonu her durum uzayındaki her alt-sete (daha ince tarifle her ölçülebilen alt-sete) olasılık aksiyomlarına uygun olacak bir şekilde, bir olasılık belirlemiştir. Böylelikle olasılık dağılımları olasılık ölçülerinin (örneklem uzayında değil) durum uzayında ifadeleridir. Bir rassal değişken böylece örnek uzayında bir olasılık ölçüsünü, örnek uzayının bir alt-setine durum uzayının ters görüntü olasılığını belirtmek suretiyle tanımlar. Diğer bir ifade ile, bir rassal değişken için olasılık dağılımı, durum uzayında olasılık dağılımını ileriye itme ölçüsüdür.

Reel değerli rassal değişkenler için olasılık dağılımları[değiştir | kaynağı değiştir]

Bir reel doğru üzerinde gösterebilinen bir olasılık dağılımı, Pr, olasılığın yarım-açık olan bir aralıkla

Pr(a, b]

belirlendiği için, bir reel değerli rassal değişken X, tümüyle bir yığmalı dağılım fonksiyonu olan

 F(x) = \Pr \left[ X \le x \right] \qquad \forall x \in \mathbb{R}.

ifadesiyle ile karakterize edilir.

Ayrık olasılık dağılımı[değiştir | kaynağı değiştir]

Eğer bir olasılık dağılımının yığmalı dağılım fonksiyonu ancak aralıklı zıplamalarla artış gösterebiliyorsa, bir ayrık olasılık dağılımı olarak tanımlanır.

Bir ayrık rassal değişken için sıfır olasılığı olmayan bütün değerleri kapsayan set ya sonlu veya sayılabilinir sonsuz set olur. Çünkü sayılamıyan kadar büyük sayıda pozitif sayılarin toplamı (ki tüm sonlu bölümsel toplamlar setinin en küçük yukarı sınırı olurlar) her halde sonsuzluğa doğru uzaklaşma gösterir. Tipik olarak, mümkün değerlerin tümünü kapsayan set topoloji görüş açısından ayrıkdır; yani setin bütün noktaları ayrılmış tek nokta halindedir. Fakat şunu da söylemek gerekir ki birkaç ender ayrık rassal değişken için bu türlü sayılabilinir set, reel doğru üzerinde yoğun set olarak bulunur.

Ayrık dağılımların niceliksel özellik kazanmaları, bir olasılık kütle fonksiyonunun ifade edilmesi suretiyle yapılır; bu fonksiyon içinde p şu ifadeye uyar


F(x) = \Pr \left[X \le x \right] = \sum_{x_i \le x} p(x_i).

Sürekli olasılık dağılımı[değiştir | kaynağı değiştir]

Bir matematiksel kullanış şekline göre, bir olasılık dağılımı, eğer yığmalı dağılım fonksiyonu bir sürekli fonksiyon ise (yani bağlı olduğu rassal değişken X için R içinde tüm x için Pr[ X = x ] = 0 ise) sürekli olasılık dağılımı olarak tanımlanır.

Diğer bir matematiksel kullanış şekline göre sürekli olasılık dağılımı terimi sadece mutlak olarak sürekli dağılımlar için ayrılıklı olarak kullanir. Bu çeşit dağılımlar için bir olasılık yoğunluk fonksiyonu bulunmakta yani reel sayılar üzerinde bir negatif olmayan Lebesgue integrali bulunan şu f fonksiyonu


F(x) = \Pr \left[ X \le x \right] = \int_{-\infty}^x f(t)\,dt

uygulanabilmektedir.

Ayrık dağılımlara ve bazı (bir kısım istatistikçinin kullanışına göre) sürekli olan (özellikle şeytan merdiveni tipte) sürekli dağılımlar için bu fonksiyon uygulanamaz.

Terminoloji[değiştir | kaynağı değiştir]

Bir dağılım için destek, tamamlayıcı seti sıfır olasığı olan en küçük kapalı set olarak tanımlanır.

İki bağımsız rassal değişkenin olasılık dağılımlarının toplamı, onların her dağılımının konvolisyonu olarak anılır.

İki rassal değişkenin birbirinden çıkarılması ile elde edilen fark için olasılık dağılımı her birinin olasılık dağılımının arasındaki çapraz korelasyon olur.

Bir ayrık rassal değişken için olasılık dağılımı ayrık olasılık dağılım olarak anılır ve benzer şekilde sürekli bir rassal değişken için olasılık dağılımı sürekli olasılık dağılımı olur.

Önemli olasılık dağılımları listesi[değiştir | kaynağı değiştir]

Olasılık kuramı içinde bazı rassal değişkenler pek çok defa pratikte ortaya çıkmaktadır; buna neden bazı hallerde birçok doğasal veya fiziksel sürecler için kullanılabilmeleri ve diğer hallerde (merkezsel limit teoremi, Poisson limit teoremi veya belleksiz süreçler veya diğer matematiksel özellikleri açıklamak için) matematiksel kuramların kuruluşu için gerekli olmalarıdır. Bu çeşit özel önemi olan rassal değişkenlerin modelleştirilmesi olasılık dağılım teorisini ortaya çıkartılmasına neden olmuştur.

Ayrık dağılımlar[değiştir | kaynağı değiştir]

Sonlu destekli[değiştir | kaynağı değiştir]

  • Bernoulli dağılımı: 1 değeri için p olasılığı ve 0 değeri için q = 1 - p olasılığı alır.
  • Rademacher dağılımı: 1 değeri için 1/2 olasılık ve -1 için 1/2 olasılık alır.
  • Binom dağılım: Bir seri bağımsız Evet/Hayır (Başarılı/Başarısız) sonuçlu deneylerdeki başarılılık sayısını tanımlar.
  • Bozulmuş dağılım: Sadece x0da bulunur. Burada X mutlaka hiç olasılıksız x0 değeri alır. Bu rassal gibi gözükmez ama matematikte verilen rassal değişken tanımlamasına uygunluk gosterir. Bu dağılım belirli deterministik değişkenler ile rassal değişkenlerinin ayni matematiksel biçimde incelenmesine imkân verir.
  • Ayrık tekdüze dağılım: Bir sonlu set içinde bulunan tüm elemanlar aynı eşit olabilirliktedirler. Bu teorik olarak bir hilesiz madeni para, bir kusursuz zar, bir kumarhane rulet tekerleği veya iyice karılmış iskambil kâğıtları için uygun olan olasılık dağılımıdır. Kuantum durumları da teorik olarak tekdüze rassal değişken olarak kullanılabilir. Ancak bu mekanik veya fiziksel aletlerin tümü gerçekte yanlı veya pürüzlü veya hatalı veya karışıklık eğimli oldukları için, pratikte görülen hareket ve davranışlar, dolayısıyla tekdüze dağılım, ancak bir yaklaşım olarak bu tip aletlerle uygulanabilmektedir. Bilgisayarların yaygın olarak kullanılması sonucu özel veya genel işlerde kullanılan bilgisayarlar sözde-rassal-sayı üreticiler olarak kullanılıp ayrık tekdüze rassal değişken sayıları üretilmektedir.
  • Hipergeometrik dağılım: Eğer toplam başarılılık sayısı bilinirse, n tane bağımsız Evet/Hayir (Başarılı/Başarısız) deneylerde ilk m sayıda başarılılık olasılığını tanımlar.
  • Zipf'in savı or Zipf dağılımı: Bir ayrık-güç dağılımıdır. En tanınmış örneği İngilizce dilinde bulunan sözcüklerin sıklığını tanımlamada kullanılışıdır.
  • Zipf-Mandelbrot savı: Bir ayrık güç kuralı dağılımı olup Zipf dağılımının genelleştirilmesidir.

Sonsuzluk destekli[değiştir | kaynağı değiştir]

Sürekli dağılımlar[değiştir | kaynağı değiştir]

Sınırlanmış bir aralıkla desteklenenler[değiştir | kaynağı değiştir]

Yarı-sonsuz aralıklarda, genellikle (0,∞) üzerinde, desteklenenler[değiştir | kaynağı değiştir]

  • Üstel dağılım, belleksiz olan bir sürecin içindeki birbirini takip eden nadir olayların arasındaki zamanı tanımlar.
  • F-dağılımı, Varyans analizi için kullanılan dağılımdır. İki (normalize edilmiş) ki-kare dağılımlı rassal değişkenin birbirine oranıdır. (Ki-kare gösteren iki değişebilire uygulanmakta iken, eğer serbestlik derecesi ile bölünerek normalize etme işlemi uygunlanmazsa, ortaya çıkan sonuca beta prime dağılım adı verilir.)

Tüm reel çizgi üzerinde desteklenenler[değiştir | kaynağı değiştir]

genellikle Lorentz tipi profil olarak anılır ve birçok sayıda sürecin analizi ile ilişkilidir. Bunlar arasında rezonans enerji dağılımı, darbeli ve doğal spectral doğru genişlemesi ve ikinci derece (quadratik) stark doğru genişlemesi sayılabilir.

Birleşik dağılımlar[değiştir | kaynağı değiştir]

Herhangi bir bağımsız rassal değişken için, birleşik dağılımin olasılık dağılımı, tek tek olasılık yoğunluk fonsksiyonlarının birbiriyle çarpımımdan elde edilir.

Aynı örnekleme uzayında iki veya daha çok sayıda rassal değişken[değiştir | kaynağı değiştir]

Matris değerli dağılımlar[değiştir | kaynağı değiştir]

Çeşitli dağılımlar[değiştir | kaynağı değiştir]

Gösteriler ve etkinlikler[değiştir | kaynağı değiştir]

SOCR bir Amerikan eğitim kaynağı olup birçok İnternete dayanan Java appletleri sağlar.

Bunların büyük çoğunlugu aralıklı ve sürekli dağılımlardır.

Ayrıca bakınız[değiştir | kaynağı değiştir]

Kaynak[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]

Commons-logo.svg
Wikimedia Commons'ta
Olasılık dağılımı ile ilgili çoklu ortam belgeleri bulunmaktadır.