Zeta dağılımı

Vikipedi, özgür ansiklopedi
Şuraya atla: kullan, ara
zeta
Olasılık kütle fonksiyonu
Zeta olasılık kütle fonksiyonu grafigi
log-log ölcekli olarak Zeta OKF. (Bu fonksiyon sadece k'nin tamsayıları icin tanımlanmaktadır; noktaları bağlayan çizgiler görüs kolaylıgı sağlamak için verilmistir; süreklilik ifade etmezler.)
Yığmalı dağılım fonksiyonu
Zeta KDF
Parametreler
Destek
Olasılık kütle fonksiyonu (OYF)
Yığmalı dağılım fonksiyonu (YDF)
Ortalama
Medyan
Mod
Varyans
Çarpıklık
Fazladan basıklık
Entropi
Moment üreten fonksiyon (mf)
Karakteristik fonksiyon

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tamsayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

Burada ζ(s) Riemann zeta fonksiyonu olur (ama bu fonksiyon s = 1 tanımlanamaz.).

Sonsuz değerde N için zeta dağılımı Zipf dağılımına eşit değerdedir. O zaman Zipf dağılımı ve zeta dağılım aynı anlamı verdikleri için birbiriyle kavram farkı vermeden değiştirilebilip kullanılırlar.

Momentler[değiştir | kaynağı değiştir]

Genel olarak, ninci ham moment Xnin beklenen değeri olarak şöyle tanımlanır:

Bu ifadenin sağ tarafında bulunan seri bir Rieman zeta funksiyonu temsil eden seridir. Ancak bu serinin yakınsaması sadece s-n değeri birden büyük ise mümkün olmaktadır. Böylece zeta dağılımı için moment

olur. Hatırlamak gerekir ki iki zeta fonksiyonunun oranı, ns - 1 ifadesi için bile, çok kesin olarak tanımlanmıştır. Ama bu yine de, momentlerin seri için tanımlandığı ve bu nedenle büyük bir n değeri için tanımlanamadığı gerçeğini değiştirmez'

Moment üreten fonksiyon[değiştir | kaynağı değiştir]

Genel olarak, moment üreten fonksiyon şöyle tanımlanır:

Bu seri gerçekte yalnızca bir polilogaritma'nin tanımlanmasıdır ve için geçerlidir ve bu halde

Bu fonksiyonun bir Taylor serisi yöntemi kullanılarak genişletilmesi mutlaka bir dağılım için momentleri vermez. Genellikle, moment üreten fonksiyonlara dayanarak elde edilen momentleri kullanan Taylor serileri şu ifedeyi ortaya çıkartır:

Bu ifade, büyük n değerleri icin momentlerin sonsuz olduğu gerçeği göz önüne getirilirse, besbellidir ki herhangi bir s 'nin sonsuz olmayan değeri için kesin olarak tanımlanamaz. Momentler yerine analitik olarak sürekli terimleri kullanırsak, polilogaritmayi temsil eden seriden

için şu ifadeyi elde ederiz:

değeri şöyle verilir

burada Hs bir harmonik sayı olur.

s=1 hali[değiştir | kaynağı değiştir]

Harmonik seri olduğu için ζ(1) sonsuz değerdedir ve bu nedenle s=1 olma hali anlamlı değildir. Ama eğer A yoğunluğu bulunan herhangi bir pozitif tamsayılar seti ise yani

var olmakta ise ve burada N(A, n) A seti içinde bulunan ve n değerine eşit veya bu değerden daha küçük set elemanlarının sayısı ise, şu ifade

bu yoğunluğa eşittir.

Bazı hallerde A için yoğunluk yok olması nedeniyle verilen ikinci sınır geçerli olur. Örnegin, eğer A birinci tamsayısı ;d olan bütün pozitif tamsayıların bir seti ise, A için bir yoğunluk bulunmaz. Ancak bu halde bile yukarıda verilen ikinci sınırlama geçerli olur ve bu sınırlama şu ifadeye oranlıdır:

Buna benzer yöntem aynen Benford'un savının geliştirilmesi için de kullanılır.

Ayrıca bakınız[değiştir | kaynağı değiştir]

Diğer güç-savı dağılımları şunlardır:

Kaynakça[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]