Çarpıklık

Vikipedi, özgür ansiklopedi
Atla: kullan, ara
Sıfır olmayan çarpıklık gösteren deneysel veri örneği

Olasılık kuramı ve istatistik bilim dallarında çarpıklık bir reel-değerli rassal değişkenin olasılık dağılımının simetrik olamayışının ölçülmesidir.

Giriş[değiştir | kaynağı değiştir]

Grafikte gösterilen dağılım incelensin. Dağılımın sağ tarafında bulunan çubukların küçülemelerinin şekli sol taraftakı çubukların küçülmelerinden farklı bir görünüm vermektedir. Çubuk yüksekliklerinin küçüldükleri taraflara kuyruk adı verilir. Genel olarak iki çeşit olan çarpıklığın bilinmektedir.

Grafikteki kuyrukların görüntüsü dağılım için hangi tip çarpıklık olduğunu gösterir. Bu iki türlü çarpıklık ve bunu açıklayan grafiğin kuyruk konumu şunlardır:

  • Pozitif çarpıklık: Bu halde sağdaki kuyruk daha uzundur. Dağılımın kütlesi grafiğin sol tarafında konsantre olmustur. Bu türlü dağılım sağdan çarpık olarak anılır.
  • Negatif çarpıklık: Bu halde soldaki kuyruk daha uzundur ve dağılımın kütlesi grafiğin sağ tarafında konsantre olmustur. Bu türlü dağılım soldan çarpık olarak anılır.

Negative and positive skew diagrams (English).svg

Tanımlama[değiştir | kaynağı değiştir]

Çarpıklık üçüncü standardize edilmiş moment olup bu matematik notasyonla

\gamma_1

olarak ifade edilmekte ve şöyle tanımlanmaktadır

\gamma_1 = \frac{\mu_3}{\sigma^3}, \!

Burada \mu_3 üçüncü ortalama etrafındakı moment olarak ve \sigma standart sapma olarak ifade edilmektedirler. Aynı şekilde, çarpıklık üçüncü kümülant olan \gamma_1 ile ikinci kümülantın (yani \kappa_2nın) kare kökünün üçüncü üssü olarak tanımlanmaktadır.

Bu tanımlama, basıklık tanımlanmasına bir analog benzetmedir; çünkü basıklık dördüncü kümülant ile ikinci kümülantın kare kökünün dördüncü üssü ifadesine bölümu arasındaki orantı ile ifade edilmektedir.

n sayıda gözlemi bulunan bir örneklem için örneklem çarpıklığı şöyle tanımlanır:

g_1 = \frac{m_3}{m_2^{3/2}} = \frac{\sqrt{n\,}\sum_{i=1}^n (x_i-\bar{x})^3}{\left(\sum_{i=1}^n (x_i-\bar{x})^2\right)^{3/2}}, \!

burada x_i ith örneklem değeri, \bar{x} örneklem ortalaması, m_3 örneklem üçüncü merkezsel momenti ve m_2 örneklem varyans olur

Eğer veriler örneklem içinse ve bilinen bir anakütleden gelmekte iseler, yukarıdaki formülleri kullanarak elde edilen örneklem çarpıklık ölçüleri için g_1 bilinmeyen reel anakütle çarpıklık ölçüsünün bir yanlı kestiricisi olduğu bilinmaktedir. Bu nedenle bazı istatistikçiler yanlı olmayan çarpıklık kestiricisi olarak şu formülün kullanılmasını tavsiye ederler:

G_1 = \frac{k_3}{k_2^{3/2}}= \frac{\sqrt{n\,(n-1)}}{n-2}\; g_1, \!

Burada k_3 üçüncü kümülantin tek simetrik yanlı olmayan kestricisi ve k_2 ikinci kümülantın simetrik yansız kestiricisi olur. Ne yazıktır ki, buna rağmen G_1 de genel olarak yanlı bir kestiricidir. Bu kestiricinin beklenen değeri gerçek anakütle çarpıklık ölçüsunun ters işaretinde bile olabilmesi mümkündür.

Bir rassal değişken olan X için çarpıklik matematik kısaltma ile Çarp[X] olarak ifade edilsin. Eğer Y n tane bağımsız rassal değişkenlerin toplamından oluşuyorsa ve her bir X dağılımı birbiri ile ayni ise, Y nin çarpıklığı şöyle gösterilebilir

Çarp[Y] = Çarp[X] / √n.

Çarpıklık özelliği birçok alanda pratik yarar sağlamaktadır. Pratik sorun çözümleri elde etmek için çok defa basitleştirilmiş model kullanılıp verilerin normal dağılım gösterdiği varsayılır. Bu varsayıma göre veriler ortalama etrafında simetrik olarak dağılmaktadırlar. Halbuki pratikte veriler çok defa kusursuzca simetrik değildirler. Böylece, verilerin çarpıklığını anlamak, kullanılan ortalamanın ne kadar simetriklikten uzak olabileceğini ve ne yönde veri merkezinin kullanılan ortalamadan değişik olacağını anlamaya yol açacaktır.

Pearson'un çarpıklık katsayıları[değiştir | kaynağı değiştir]

Karl Pearson çarpıklık ölçülmesi için iki basit şekilde kestirim ölçüsü önermiştir. Bunlar

Ancak aynı veriler için, bu iki kestirim ölçüsünün aynı işarette olacağına ve eğrilerinin işaretinin grafikle görülebilen artı/eksi çarpıklık özelliğine benzeyeceğine hiçbir garanti bulunmamaktadır.

İçsel bağlantılar[değiştir | kaynağı değiştir]

Kaynak[değiştir | kaynağı değiştir]