Elektrik akımı

Vikipedi, özgür ansiklopedi
(Akım şiddeti sayfasından yönlendirildi)
Atla: kullan, ara

Elektrik akımı veya elektriksel akım, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bir kesit üzerinden birim zamanda geçen yük miktarı elektrik akımını verir. SI birimi Amper'dir (kısaltması A). Herhangi bir kesit üzerinden bir saniye içerisinde bir Coulomb'luk yük geçmesi bir Amper'lik akıma tekabül eder. Ohm Kanunu'na uyan maddeler üzerinden geçen akım bu maddenin direnci ile ters orantılı, akımı oluşturan gerilim ile doğru orantılıdır. Doğadaki çoğu madde Ohm Kanunu'na büyük oranda uyar, ancak akım ve gerilim arasındaki bağıntı çok daha karışık olabilir. Yarı iletkenler bu duruma güzel bir örnektir.

Elektrik akımının fiziği[değiştir | kaynağı değiştir]

Çeşitli ortamlarda elektrik akımı[değiştir | kaynağı değiştir]

Metaller üzerindeki akım[değiştir | kaynağı değiştir]

Katı iletken metal, hareketli veya serbest elektronlara sahiptir. Bu elektronlar metalin kristal yapisina bağlıdirlar, fakat herhangi bir atoma bağlı değillerdir. Herhangi bir dış elektriksel alan uygulamadan bile bu elektronlar ısı enerjisinden dolayı rastgele hareket ederler. Fakat normalde bir metaldeki net akım sıfırdır. Herhangi bir zamanda metal objenin herhangi bir kesitinde bir yönden diğerine geçen elektronların sayısı aksi yönde geçiş yapanlarınkine ortalamada eşittir. Bir metal telin iki ucu arasına batarya gibi bir DC kaynağı bağlandığında iletkende bir elektrik alanı oluşur. Bu elektrik alanı metaldeki serbest elektronların alanın tersi yönünde sürüklenmesine sebep olur. Ortalamada bir yöne daha fazla hareket eden elektronlar elektrik akımını yaratmış olurlar.

Elektrolitler üzerindeki akım[değiştir | kaynağı değiştir]

Elektrolitler içlerinde elektrik akımını mümkün kılacak serbest iyonlar bulunduran maddelerdir. Elektrokimyasal hücreler bir elektrolit ve bu elektrolide yerleştirilmiş elektrotlardan oluşur. Bu hücreler kimyasal enerjiyi elektrik enerjisine çevirmek (pil) ya da elektrik enerjisi kullanarak bir kimyasal tepkimeyi gerçekleştirmek için (elektroliz) kullanılırlar. Her iki durumda da elektrotların çevresinde iyonlar oluşur ya da yok olur. Bu tepkimeler sırasında elektrolit içerisinde birbirini nötrleyen ya da birbirinden ayrılan anyon ve katyonlar (negatif ve pozitif yüklü iyonlar) elektrotlara doğru ya da aksi yönde hareketleri sırasında elektrik akımını oluştururlar. Örnek olarak, sıkça rastlanan kurşunlu pillerde elektrik akımı pozitif yüklü hidrojen iyonlarının bir yöne negatif yüklü sülfat iyonlarının diğer yöne hareket etmesinden meydana gelir.

Diğer ortamlar[değiştir | kaynağı değiştir]

Vakumda elektronlardan ya da iyonlardan meydana gelmiş bir ışın elektrik akımına neden olabilir. Benzer şekilde kıvılcım ve plazmalarda elektrik akımı hareket eden elektronlar ve pozitif ya da negatif yüklü iyonlardan meydana gelir. Yarı iletkenler üzerinde elektrik akımı, elektronların yanı sıra, pozitif yüklü elektron boşlukları (Yarı iletken kristali üzerinde eksik olan değerlik elektronlar) tarafından da taşınır. P tipi yarı iletkenlerde elektrik akımı büyük oranda bu şekilde oluşur.

Elektromanyetizma[değiştir | kaynağı değiştir]

Ampére yasasına göre elektrik akımı bir manyetik alan meydana getirir.

Elektrik akımı bir manyetik alan meydana getirir. Bu manyetik alan, akım geçiren teli çevreleyen dairesel alan çizgileri olarak gözde canlandırılabilir.

Elektrik akımı bir galvanometre yardımıyla doğrudan ölçülebilir, ama bu yöntem devrenin koparılmasını gerektirmektedir, bu da bazi durumlarda zorluk yaratır. Akım, devreyi koparmadan, meydana getirdiği manyetik alan sayesinde de ölçülebilir. Bu amaçla kullanılan cihazlar arasında Hall etkisi sensörleri, akım transformatörleri ve Rogowski bobinleri de vardır.

Özel görelilik kuramı kullanılarak manyetik alan, akımı taşıyan parçacıklarla aynı hızda giden bir gözlemci için durağan bir elektrik alan dönüştürüllebilir. Zaten akımın kendisi de ölçüldüğü referans sistemine bağlıdır, çünkü akım, parçacıkların hızına ve bu da referans sistemine bağlıdır.

Matematiksel Modeller[değiştir | kaynağı değiştir]

Akım miktarının hesaplanması[değiştir | kaynağı değiştir]

Sabit bir akım I amper olarak şu şekilde hesaplanabilir:

I = {Q \over t}

burada

Q \!\ ölçülen süre boyunca kesitten geçen elektrik yükü, coulomb (amper saniye) olarak ve
t \!\ zaman, saniye olarak

Devamında:

Q=It \!\ ve t = {Q \over I}

Ohm yasası[değiştir | kaynağı değiştir]

Ohm kanunu, ideal bir direnç veya diğer omik aygıtlarda uygulanan gerilimin akıma oranıdır.


I = \frac {v}{R}

burada

I akım, birimi Amper'dir
v gerilim, birimi Volt'dur
R direnç, birimi Ohm'dur

Akım yoğunluğu[değiştir | kaynağı değiştir]

Elektrik akımı yoğunluğunun bir ölçümüdür. Bu elektrik akımının seçili alana oranını veren bir vektörel büyüklüktür SI birimlerinde, akım yoğunluğu amper bölü metrekare ile ölçülür.


J = \frac {I}{S}

Elektrik yüklerinin hızı[değiştir | kaynağı değiştir]

Bir iletkenin içinde gezinen yüklü parçacıklar sürekli olarak rastgele yönlere doğru hareket ederler. Yükte net bir akış olabilmesi için, parçacıklar birlikte hareket etmelidirler. Elektronlar metalde taşıyıcıdırlar ve kararsız yolla akarlar (atomdan atoma sıçrarlar), fakat genellikle elektriksel alan yönünde akarlar. Akış hızları şöyle hesaplanabilir:

I=nAvQ \!\

burada

I \!\ elektrik akımı
n \!\ yüklü parçaçıkların sayısı birim hacim
A \!\ iletkenin kesit alanı
v \!\ akış hızı ve
Q \!\ her bir parçacığın yükü.

Katı maddedeki elektrik akışı tipik olarak çok yavaştır. Örneğin, 0.5 mm² kesitli bir bakır tel 5 A lik bir akım taşırken elektronların akım yönündeki ortalama hızı saniyede milimetreler mertebesindednir. Buna karşılık katot ışınlı tüplerin içerisindeki neredeyse vakum ortamda elektronlar neredeyse doğrusal rotalarda ışık hızının onda birine yakın hızlarda hareket ederler.

Elektriksel yük taşıyan parçacıklar hızlı ya da yavaş da hareket etse, iletkenin yüzeyinde oluşan elektriksel sinyaller genelde ışık hızına yakın hızlarda ilerlerler. Bu sonuca Maxwell denklemlerinin çözümüyle varılabilir. İlk bakışta sezgiye aykırı görünen bu durum bilardo toplarının çok hızlı hareket etmediklerinde bile çarpışmanın etkisini neredeyse anında iletmelerine benzetilerek açıklanabilir.

Doğru akım ve alternatif akım[değiştir | kaynağı değiştir]

Doğru akım elektrik yükünün hep aynı yönde akmasıyla oluşur. Buna karşılık alternatif akımda eşit zaman aralıklarıyla akım yönü tersine döner. Bunların üretilmesi, iletilmesi ve kullanılması çok farklı özellikler gösterirler. Çeşitli elektronik devre elemanları kullanılarak bu iki akımı birbirine dönüştürmek mümkündür.

Elektrik enerjisi, çeşitli yöntemlerle diğer enerji çeşitlerinin dönüştürülmesiyle üretilir. Ortaya çıkan akım doğru ya da alternatif akım olabilir. Doğru akım en yaygın olarak kimyasal pillerde, güneş pillerinde ve dinamolarda(doğru akım motoru) üretilir. Alternatif akım ise genellikle alternatif akım motorlarında üretilir.

Kullanılan elektriğin büyük çoğunluğu herhangi bir enerji çeşidinin önce hareket enerjisine, ordan elektrik enerjisine çevrilmesiyle elde edilir. Alternatif akım motorları genel olarak doğru akım motorlarından daha ucuza mal olurlar, bakımları daha kolaydır ve daha yüksek verimde çalışırlar. Dolayısıyla alternatif akım büyük miktarda üretime daha uygundur. Bunun yanında alternatif akımın iletimi de çeşitli nedenlerden çok daha ucuz ve verimli bir şekilde yapılabilir. Elektrik şebekesinin alternatif akım taşıması bu nedenlerden ötürüdür. Buna karşılık elektrik şebekesinden uzak ya da taşınabilir uygulamalarda piller yardımıyla doğru akım elde etmek daha kolaydır.

Elektrik enerjisinin hareket enerjisine dönüştürülmesinde de alternatif akım motorları benzer avantajlara sahiplerdir. Bu yüzden hareket enerjisi gerektiren uygulamalarda (örneğin elektrikli ev aletleri) alternatif akım tercih edilir. Öte yandan, doğru akım, elektronik cihazların (özellikle dijital) çalışması için çok daha uygundur.

Görüldüğü yerler[değiştir | kaynağı değiştir]

Doğada karşılaşılan elektrik akımları arasında yıldırımlar, Güneş rüzgârları ve kuzey ışıkları vardır. İnsan yapımı elektrik akımlarına örnek olarak da metal tellerde akan elektronlar örnek gösterilebilir. Bu duruma uzun mesafelere elektrik enerjisi dağıtan elektrik iletim hatlarında ya da elektrikli ve elektronik aletlerin içlerindeki tellerde rastlanabilir. Akıma Elektronik bilimi dahilinde farklı yerlerde de rastlanabilir. Bunların arasında dirençlerin üzerinden geçen akımlar, vakumlu tüplerdeki vakumdan geçen akımlar, pillerin ya da sinir hücrelerinin içinde akan iyonlar ve bir yarı iletkenden akan elektron boşlukları da vardır.

Tehlikeler[değiştir | kaynağı değiştir]

Elektrik akımından kaynaklı en ciddi zararlar elektrik çarpmalarıdır. Elektrik çarpmasının etkileri pek çok etkene dayanır. En onemli etkenler akımın şiddeti, elektriksel temasın yapısı, etkilenen uzuvların durumları, akımın vücutta takip ettiği yol ve akım kaynağının gerilimidir. Çok zayıf bir akım sadece bir karıncalanmaya neden olurken, deriden geçen şiddetli akımlar ciddi yanıklara hatta kalpten geçen akımlar kalp krizine bile sebep olabilir.

Kontrol dışı elektrik kaynaklı ısınmalar da tehlikeli sonuçlar doğurabilir. Fazla güç taşıyan kablolar yaygın bir yangın sebebidir. Cepte birlikte taşınan madeni paralar ve bir AA Pil kadar küçük bir güç kaynağı bile kısa devre sonucu hızlıca ısınıp deride yanıklara sebep olabilir.

Kaynakça[değiştir | kaynağı değiştir]