Malzeme bilimi

Vikipedi, özgür ansiklopedi
(Malzeme Bilimi sayfasından yönlendirildi)
Taramalı elektron mikroskobu ile görüntülenen, yedi kristalografik düzlemi gösteren bir sentetik elmas kübiktahedron

Malzeme bilimi, malzemelerin yapı ve özelliklerini inceleyen, yeni malzemelerin üretilmesini veya sentezlenmesini de içine alan disiplinlerarası bir bilim dalıdır.[1]

Malzeme biliminin entelektüel kökenleri, araştırmacıların metalurji ve mineralojideki eski, fenomenolojik gözlemleri anlamak için kimya, fizik ve mühendislikten analitik düşünceyi kullanmaya başladıkları Aydınlanma Çağı'ndan kaynaklanmaktadır. Malzeme bilimi hala fizik, kimya ve mühendislik unsurlarını içermektedir. Bu nedenle, alan uzun zamandır akademik kurumlar tarafından bu ilgili alanların bir alt alanı olarak kabul edilmiştir. 1940'lardan başlayarak, malzeme bilimi daha yaygın olarak belirli ve farklı bir bilim ve mühendislik alanı olarak tanınmaya başlandı ve dünyadaki büyük teknik üniversiteler çalışması için özel okullar oluşturdu.

Malzeme bilimcileri, bir malzemenin (işlemenin) tarihinin yapısını ve dolayısıyla malzemenin özelliklerini ve performansını nasıl etkilediğini anlamayı vurgular. İşlem-yapı-özellik ilişkilerinin anlaşılmasına malzeme paradigması denir. Bu paradigma, nanoteknoloji, biyomalzemeler ve metalurji dahil olmak üzere çeşitli araştırma alanlarında anlayışı ilerletmek için kullanılır.

Malzeme bilimi aynı zamanda adli mühendislik ve hasar analizinin önemli bir parçasıdır amaçlandığı gibi çalışmayan, kişisel yaralanmaya veya mülke zarar veren malzemelerin, ürünlerin, yapıların veya bileşenlerin araştırılmasıdır. Bu tür araştırmalar, örneğin, çeşitli havacılık kazalarının ve olaylarının nedenlerini anlamanın anahtarıdır.

Tarihçe[değiştir | kaynağı değiştir]

Geç Tunç Çağında kalma hançer bıçağı.

Malzeme bilimi, uygulamalı bilim ve mühendisliğin en eski biçimlerinden biridir. İnsan uygarlığının tarihinde, farklı dönemler genellikle insanın yeni bir malzeme türüyle çalışma yeteneğindeki ilerlemeye göre geriye dönük olarak tanımlanmıştır Taş Devri, Bronz Çağı, Demir Çağı gibi ifadeler buna güzel birer örnek. Aslında seramik üretiminden ve onun türevi sayılan metalurjiden ortaya çıkan malzeme bilimi uygulama bilimlerin ve mühendisliğin en eski formlarından biridir. Modern malzeme bilimi doğrudan madencilik, seramik ve ateş kullanımından gelişmiş olan metalurjiden gelişmiştir. Malzemeleri anlamadaki büyük atılım 19. yüzyılın sonlarında Amerikan bilim insanı Josiah Willard Gibbs farklı evrelerdeki atomik yapılarla bağlantılı termodinamik özelliklerin bir materyalin fiziksel özellikleriyle bağlantılı olduğunu ortaya çıkarmasıyla meydana geldi. Modern malzeme biliminin önemli unsurları uzay yarışının bir sonucudur; uzayın keşfedilmesini sağlayan uzay araçlarının yapımında kullanılan metal alaşımların, çakmak taşının ve karbon materyallerin anlaşılması ve tekniği. Malzeme bilimi plastik yarı iletkenler ve biyomateryaller gibi yenilikçi teknolojilerin gelişimini etkilemiş ve bu gelişimden etkilenmiştir.

1960’lardan önce, birçok malzeme bilimi bölümü 19. ve 20. yüzyılın metallere verdiği önemin bir yansıması olarak metalurji bölümü olarak adlandırılmıştı. Amerika Birleşik Devletleri’nde malzeme biliminin büyümesi 1960’lı yıllarda malzeme bilimindeki temel araştırma ve eğitimin ulusal programını genişletmek amacıyla birçok üniversite laboratuvarlarını finanse eden "İleri Araştırma Projeleri Ajansı" tarafından kolaylaştırıldı. Alan o zamandan beri seramik, polimerler, yarı iletkenler, manyetik materyaller, tıbbı implant malzemeleri, biyolojik malzemeler ve nanomalzemeler de dahil olmak üzere her sınıf malzemeyi içerecek şekilde genişledi.

Modern malzeme biliminin birçok önemli unsuru uzay yarışından kaynaklanmıştır. Özellikle, metalik alaşımların, seramiklerin ve diğer malzemelerin anlaşılması ve mühendisliği, uzay araçlarının, uzay kıyafetlerinin ve benzerlerinin yapımında kullanıldı ve edinilen yeni bilgiler çeşitli tüketici ve endüstriyel uygulamaların gelişmesine yol açtı. Malzeme bilimi, fiber optik kablolardan tenis ayakkabılarına, güneş pillerinden yelkenli teknelere kadar her şeyin ayrılmaz bir parçası olarak 21. yüzyıl uygarlığının fiziksel temellerini atmıştır. Malzeme bilimi, çevresel bozulma ve karbon bazlı yakıtların yakılması nedeniyle sera gazlarının sürekli birikmesi karşısında sürdürülebilir kalkınmaya yönelik teknolojik çözümler bulma arayışında merkezi öneme sahiptir.[2]

Malzeme biliminin temel prensipleri[değiştir | kaynağı değiştir]

Malzemenin özelliklerinin, işlenmesinin, performansının ve yapısının birbiriyle nasıl ilişkili olduğunu gösteren malzeme bilimi tetrahedronu.

Bir malzeme belirli uygulamalar için kullanılması amaçlanan bir madde (çoğunlukla katı ancak diğer yoğun fazlar da dahil edilebilir) olarak tanımlanır. Etrafımızda binalardan uzay araçlarında kadar her yerde bulunabilecek çok sayıda malzeme var. Malzemeler kristal yapılarına göre genellikle iki gruba ayrılabilirler: Kristal ve kristalsiz (amorf). Geleneksel olarak malzemeler metaller, seramikler ve polimerler olmak üzere üç ana kategoriye ayrılırlar. Bunun dışında bu üç ana malzemeden en az iki malzemenin birlikte kullanıldığı malzemeler ise kompozit (karma) malzemelerdir. Diğer bir malzeme grubu ise geliştirilmekte olan yeni ve ileri düzeyde malzemeler olup yarı iletkenler, nanomalzemeler, akıllı malzemeler ve biyomalzemeleri içerir.[1]

Malzeme biliminin temeli materyallerin yapısını incelemek ve özellikleriyle ilişkilendirmek oluşturur. Bir malzeme bilimci yapı-özellik ilişkisini öğrendiği anda bir malzemenin belirli bir uygulamadaki göreceli performansını çalışmaya geçebilir. Bir malzemenin önemli yapı belirleyicileri ve dolayısıyla özellikleri onun kimyasal element bileşenleri ve son duruma getirildiği yoldur. Bir araya getirilen ve kinetik ve termodinamik kurallarıyla ilişkilendirilen bu nitelikler malzemenin mikroyapısını ve özelliklerini yönetir.

Yapı[değiştir | kaynağı değiştir]

Yukarıda da bahsedildiği gibi yapı malzeme bilimi alanının en önemli unsurlarından biridir. Malzeme bilimi malzemelerin atomik ölçekten makro ölçeğe kadar yapılarını inceler. Nitelendirme malzeme bilimcilerin malzemenin yapısını inceledikleri yoldur. X ışını kırılması, elektronlar ve nötronlar, tayfölçümünün farklı formlar gibi teknikleri ve Raman tayfölçümü, enerji ayıran tayfölçümü (EDS), kromatografi, termal analiz, elektron mikroskop analizi gibi kimyasal analizleri içerir. Yapı aşağıda açıklandığı gibi farklı seviyelerde incelenir.

Atom yapısı[değiştir | kaynağı değiştir]

Altının (100) yüzeyini oluşturan atomları gösteren taramalı tünelleme mikroskop (STM) görüntüsü.

Materyallerin atomlarıyla ve moleküller, kristaller vb. vermek için nasıl düzenlendikleriyle ilgilenir. Malzemenin elektrik, manyetik ve kimyasal özelliklerinden çoğu, yapının bu seviyesinden doğmuştur. İlgili uzunluk ölçüleri angström (0.1 nm) birimindedir. Atomların ve moleküllerin bağ yapma ve dizilme şekli herhangi bir materyalin davranışını ve özelliklerini incelemede esastır.

Bağlanma[değiştir | kaynağı değiştir]

Malzeme yapısını ve özellikleriyle bağlantısını tam olarak anlamak için malzeme bilimcilerin atomların, iyonların ve moleküllerin nasıl farklı dizildiklerini ve birbirlerine nasıl bağlandıklarını çalışmaları gerekir. Bu kuantum kimyası ya da kuantum fiziğinin çalışması ya da kullanımını içerir. Katı hal fiziği, katı hal kimyası ve fiziksel kimya da ayrıca bağlanma ve yapı çalışmalarında yer alır.

Kristalografi[değiştir | kaynağı değiştir]

Yüzey merkezli kübik kristal kafes yapısında oktahedral ve tetrahedral interstisyel bölgeler

Kristalografi kristal katılarda atom dizilimini inceleyen bilimdir ve malzeme bilimciler için çok kullanışlı bir araçtır. Tek kristallerde atomların kristal diziliminin etkisi genelde makroskopik olarak görmesi çok kolaydır çünkü kristallerin doğal şekilleri atom yapısını yansıtır. Ayrıca, fiziksel özellikler genellikle kristal kusurlar tarafından kontrol edilir. Kristal yapıları anlamak kristalografik kusurları anlamak için önemli bir önkoşuldur. Çoğunlukla, materyaller tek bir kristal halinde değil çoklu kristal yapıda (farklı yönelimlerdeki küçük kristal toplamında olduğu gibi) oluşurlar. Bu nedenden dolayı, çok sayıda kristalle çoklu kristal örneklerinin kırılma örüntülerini kullanan toz kırınımı yöntemi yapısal belirlemede önemli bir rol oynar. Çoğu malzemeler kristal yapıya sahip. Ancak bazı düzenli kristal yapı göstermeyen önemli malzemeler var. Polimerler farklı ölçülerde kristallik gösterir ve birçoğu tamamen kristalsizdir. Cam, bazı seramikler ve birçok doğal materyaller biçimsizdir yani atom dizilimlerinde uzun mesafeli sıralamalara sahip değiller. Polimerlerin çalışılması kimyasal elementleri ve mekanik, fiziksel özelliklerin tanımları ve termodinamik vermek için istatistiksel termodinamikleri birleştirir.

Nanoyapı[değiştir | kaynağı değiştir]

Buckminsterfullerenin nanoyapısı

Nanoyapı 1-100 nm aralığındaki yapılarla ve nesnelerle ilgilenir. Birçok materyalde, atomlar ve moleküller nano ölçekte nesneler oluşturmak için bir araya gelirler. Bu elektrik, manyetik, optik ve mekanik özelliklerin oluşmasına yol açar.

Nanoyapıları tanımlarken nano ölçekteki boyutların sayısı arasında ayrım yapmak gereklidir. Nano dokulu yüzeyler nano ölçekte tek boyuta sahipler, örneğin bir nesnenin yüzey kalınlığı 0.1 ile 100 nm arasındadır. Nano tüpler nano ölçekte iki boyutludur, örneğin tüpün çapı 0.1 ile 100 nm arasındadır, ki bu uzunluk çok daha fazla olabilir. Son olarak da nanoparçacıklar nanoölçekte üç boyutludur, örneğin parçacık her üç boyutta da 0.1 ile 100 nm arasındadır. Nanoparçacık ve çok küçük parçacık (UFP) terimleri genellikle eş anlamlı kullanılır ancak UFP mikrometre aralığa ulaşabilir. Nanoyapı terimi genelde manyetik teknolojisinden bahsederken kullanılır. Biyolojide nano ölçek yapı genellikle ultrastrüktür olarak adlandırılır.

Atom ya da molekülleri nanoölçekte bileşen oluşturan materyaller (nanoyapı oluşturan) nanomateryal olarak adlandırılır. Nanomateryaller sahip oldukları eşsiz özellikler dolayısıyla malzeme biliminde yoğun araştırma konusudur.

Mikroyapı[değiştir | kaynağı değiştir]

Dökülmüş ve dendritik yapıda olan bir bronzun mikroyapısı.

Mikroyapı hazır bir yüzeyin yapısı ya da mikroskopla 25 katın üzerinde büyütülen materyalin ince foyası olarak tanımlanır. 100 nm’den birkaç cm büyüklükteki nesnelerle ilgilenir. Bir malzemenin (metal, polimer, seramik ve kompozit olarak kabaca sınıflanabilir) mikroyapısı güç, dayanıklılık, esneklik, sertlik, yüksek/düşük sıcaklıktaki davranış, aşınma direnci gibi birçok fiziksel özelliği etkileyebilir.

Malzemenin mikroyapısının incelenmesi teknikleri; metal ve alaşımları için metalografi, seramikler için seramografi, polimerik malzemeler için ise plastografi terimleri kullanılırken toplu olarak materyalografi olarak adlandırılır.

Bir malzemenin mükemmel bir kristalinin üretimi fiziksel olarak imkânsızdır. Örneğin bir kristal malzeme tortular, tane sınırı (Hall-Patch ilişkisi), arayer atomları, boşluklar ya da yer değişimli atomlar gibi bazı kusurlar içerecektir. Materyallerin mikroyapısı bu kusurları açığa çıkarır ki üzerinde çalışılabilsin.

Makroyapı[değiştir | kaynağı değiştir]

Bazı durumlarda, malzemenin yapısı çıplak gözle görülebilecek kadar büyüktür.

Makroyapı bir materyalin militmetreden metreye kadar olan çıplak gözle görebildiğimiz malzemelerin yapısının görüntüsüdür.

Malzemenin temel özellikleri[değiştir | kaynağı değiştir]

Malzemelerin çok sayıda özellikleri vardır. Temel özellikler şunlardır:

  • Mekanik özellikleri
  • Kimyasal özellikler
  • Elektrik özellikleri
  • Termal özellikler
  • Optik özellikler
  • Manyetik özellikler

Bir malzemenin özellikleri o maddenin kullanılabilirliğini ve dolayısıyla da teknik uygulamasını belirler.

Sentez ve işleme[değiştir | kaynağı değiştir]

Sentez ve işleme, istenen mikroyapı veya nanoyapıya sahip bir malzemenin oluşturulmasını içerir. Teknik bir açıdan bakıldığında, eğer bir malzeme için hiç ekonomik üretim metodu geliştirilmemişse endüstride kullanılamaz. Bu nedenle materyallerin işlenmesi malzeme bilimi alanında çok önemlidir.

Farklı malzemeler farklı işleme/sentez teknikleri gerektirir. Örneğin metalin işlenmesi tarih boyunca çok önemli olmuştur ve fiziksel metalurji diye bilinen malzeme biliminin bir dalı altında çalışılır. Ayrıca kimyasal ve fiziksel teknikler polimer, seramik ve ince filmler gibi materyallerin sentezlenmesinde kullanılır. Son zamanlarda grafen gibi nanomalzemelerin sentezlenmesi için yeni teknikler geliştiriliyor.

Termodinamik[değiştir | kaynağı değiştir]

bir ikili faz diyagramı ve kristal yapı (lamel ötektik). Faz diyagramlarının anlaşılması termodinamikle yakından ilişkilidir.

Termodinamik ısı, sıcaklık ve bunların enerji ve işle olan ilişkileriyle ilgilenir. İç enerji, entropi ve radyasyon ya da maddenin kütlesini kısmen tanımlayan baskı gibi makroskopik değişkenleri belirler. Bu değişkenlerin davranışı sadece belirli malzemelere has özellikler değil bütün malzemelerde yaygın olan genel sabitlere bağlı olduğunu öne sürer. Bu genel sabitler termodinamiğin dört kuralında açıklanmıştır. Termodinamik moleküller gibi çok büyük sayıdaki mikroskopik sabitlerin mikroskopik davranışlarını değil kütlenin bütün olarak davranışını tanımlar. Mikroskopik parçacıkların bu davranışı istatistiksel mekanik tarafından tanımlanır ve termodinamiğin kuralları da istatistiksel mekanikten gelir.

Termodinamik çalışmaları malzeme bilimi için temeldir. Kimyasal tepkimeler, manyetizma, kutuplaşabilirlik ve esnekliği içeren malzeme bilimi ve mühendisliğindeki genel fenomene işlemek için altyapı hazırlar. Ayrıca faz diyagramları ve faz dengesinin anlaşılmasına da yardım eder.

Kimyasal kinetik[değiştir | kaynağı değiştir]

Kimyasal kinetik bilimi çeşitli güçlerin etkisi altında denge değişikliği dışında kalan sistemlerin oran çalışmasıdır. Malzeme bilimine uygulandığında, uygulanan belirli alana göre bir materyalin zamanla nasıl değiştiğiyle (dengesiz durumdan denge durumuna) ilgilenir. Materyallerde şekil, boyut, bileşim ve yapı gibi değişen çeşitli işlemlerin oranını detaylı olarak anlatır. Difüzyon materyallerin en yaygın olarak değişime uğradığı mekanizma olduğu için kinetik bilimin en önemli çalışma alanıdır.

Kinetik bilimi materyallerin işlenmesine temeldir çünkü diğerlerine göre ısı uygulanmasıyla mikroyapının nasıl değiştiğini detaylı olarak açıklar.

Araştırmada malzemeler[değiştir | kaynağı değiştir]

Malzeme bilimi oldukça aktif bir araştırma alanıdır. Malzeme bilimi bölümleri ile birlikte fizik, kimya ve birçok mühendislik bölümü malzeme araştırmalarında yer almaktadır. Malzeme araştırması çok çeşitli konuları kapsar; aşağıdaki kapsamlı olmayan liste birkaç önemli araştırma alanını vurgulamaktadır.

Nanomalzemeler[değiştir | kaynağı değiştir]

Karbon nanotüp demetlerinin SEM görüntüsü.

Nanomalzemeler temelde 1-1000 nanometre ama genelde 1-100 nm boyutlarında (en azından tek bir boyutta) tek bir ünitenin malzemeleri olarak tanımlanır.

Nanomalzeme araştırması metroloji ve mikrofabrikasyon araştırması desteğiyle geliştiren sentezin gelişimini güçlendiren nanoteknolojiye malzeme bilimine dayalı bir yaklaşım ele alır. Nano büyüklükteki yapıda malzemeler genellikle eşsiz optik, elektronik ve mekanik özelliklere sahiptir.

Nanomalzeme alanı geleneksel kimya alanı gibi genel hatlarıyla fulerinler gibi organik nanomalzemeler ve silikon gibi diğer elemtlere dayalı inorganik malzemeler etrafında düzenlenmiştir. Nanomalzemelerin örnekleri olarak fulerinler, karbon nanotüpler, nanokristaller ve benzerleri verilebilir.

Biyomalzemeler[değiştir | kaynağı değiştir]

Biyomalzeme olan titanyum alaşımlı kalça implantı parçaları.

Bir biyomalzeme biyolojik sistemlerle etkileşime geçen herhangi bir madde, yüzey ya da yapı olabilir. Bir bilim olarak, biyomalzeme yaklaşık 50 yaşında. Biyomalzeme çalışmaları biyomalzeme bilimi olarak adlandırılır. Tarih boyunca birçok şirketin yeni ürünlerin gelişimine yüksek miktarlarda paralar harcamasıyla birlikte güçlü ve istikrarlı bir büyüme gösterdi. Biyomalzeme bilimi tıp, biyoloji, kimya, doku mühendisliği ve malzeme biliminin öğelerini kapsar.

Biyomalzeme doğadan elde edilebilir ya da metal bişenler, polimerler, seramikler ya da bileşik maddeler kullanan bir çeşit kimyasal yaklaşımlarla labarotuvarda sentezlenebilir. Genelde tıbbi uygulama için kullanılırlar ve dolayısıyla yaşayan bir yapının bir kısmı ya da tamamını ya da işleyen, arttıran veya doğal bir fonksiyonun yerine geçebilen biyomedikal ve araç içerir. Böyle fonksiyonlar kalp kapakçığı olarak kullanılma gibi iyi huylu ya da hidroksiapatit kaplı kalça implantları gibi daha etkileşimli bir işlevsellikle biyoaktif olabilir. Biyomalzemeler diş tedavilerinle, ameliyatlarda ve ilaç tesliminde her gün kullanılır. Örneğin, farmosötik ürünlerle doldurulmuş bir yapı vücuda yerleştirilebilir ve uzun bir süre boyunca sürekli ilaç salınımı sağlar. Bir biyomalzeme aynı zamanda otograft, alograft ya da transplant malzemesi olarak kullanılan ksenogreft de olabilir.

Elektronik, optik ve manyetik malzemeler[değiştir | kaynağı değiştir]

Negatif indeksli metamalzeme

Yarıiletkenler, metaller ve seramik günümüzde tümleşik elektrik devreleri, optoelektronik cihazlar ve manyetik ve yığın depolama medyası gibi çok karmaşık sistemler oluşturmak için kullanılır. Bu malzemeler bugünkü modern programlama dünyamızı oluşturuyor ve dolayısıyla bu malzemelerin araştırılması büyük önem taşıyor.

Yarıiletkenler bu tür malzemelerin tipik bir örneğidir. İletkenler ile yalıtkanlar arasında özellikler gösteren malzemelerdir. Elektrik iletkenlikleri katışkı derişimlerine karşı çok hassastır ve bu istenilen elektronik özellikleri elde etmek için katkılama kullanımına izin verir. Dolayısıyla, yarıiletkenler geleneksel bilgisayarın temelini oluşturur.

Bu alan aynı zamanda üstün iletken malzemeler, Spintronik, metamalzeme gibi araştırma alanlarını da kapsar. Bu malzemelerin çalışılması malzeme bilimi ve katı hal fiziği ya da yoğun madde fiziğini de içerir.

Sayısal malzeme bilimi ve teorisi[değiştir | kaynağı değiştir]

Bir Alüminyum Borunun Eğilme Analizi

Bilgi işlem gücündeki sürekli artışlarla, malzemelerin davranışını simüle etmek mümkün hale gelmiştir. Bu, malzeme bilimcilerinin davranış ve mekanizmaları anlamalarını, yeni malzemeler tasarlamalarını ve daha önce yeterince anlaşılmayan özellikleri açıklamalarını sağlar. Entegre hesaplamalı malzeme mühendisliğini çevreleyen çabalar, belirli bir uygulama için malzeme özelliklerini optimize etme zamanını ve çabasını önemli ölçüde azaltmak için hesaplama yöntemlerini deneylerle birleştirmeye odaklanmaktadır. Bu, yoğunluk fonksiyonel teorisi, moleküler dinamik, Monte Carlo, çıkık dinamikleri, faz alanı, sonlu elemanlar ve daha fazlası gibi yöntemleri kullanarak tüm uzunluk ölçeklerinde malzemelerin simüle edilmesini içerir.

Endüstride malzemeler[değiştir | kaynağı değiştir]

Büyük malzeme gelişmeleri yeni ürünlerin ve hatta yeni endüstrilerin oluşmasına yol açabilir ancak durağan endüstriler de artımsal geliştirmeler ve kullanımda olan malzemelerle olan sorunları gidermek için malzeme bilimcileri çalıştırır. Malzeme biliminin endüstriyel uygulamaları malzeme tasarımı, malzemelerin sanayi üretimindeki maliyet-kazanç dengesi, işleme teknikleri (döküm, haddeleme, kaynak, iyon katkılama, kristal büyütme, ince zar bırakım, sinterleme, cam üfleme vb.) ve elektron mikroskopi, X ışını kırılması, ısı ölçüm, nükleer mikroskopi, Rutherford geri saçılımı, nötron kırılması, küçük açılı X ışını dağılması gibi analitik teknikleri içerir. Malzeme karakterizasyonunun yanı sıra, malzeme bilimci/mühendisi aynı zamanda malzemenin çıkarılması ve kullanışlı bir hale dönüştürülmesiyle de ilgilenir. Yani külçe dökümü, döküm teknikleri, yüksek fırın çıkarımı ve elektrolitik çıkarım bir malzeme mühendisinin bilgi sahibi olmasa gereken konular. Genellikle, kaba malzemenin bileşenleri ya da ikincil elementlerin küçük miktarlarının varlığı, yokluğu ya da çeşitliliğinin üretilen malzemenin son özelliklerinde büyük etkisi olacaktır. Örneğin çelikler içerdikleri karbon ve diğer alaşım elementlerinin 1/10 ve 1/100 ağırlık yüzdelerine dayanarak sınıflandırılır. Dolayısıyla yüksek fırındaki demirin çıkarılmasında kullanılan çıkarım ve saflaştırma teknikleri üretilebilecek olan çeliğin kalitesinde önemli etkiye sahip olacak.

Metal ve alaşımları[değiştir | kaynağı değiştir]

Farklı metal profil çubukları

Metal alaşımlarının incelenmesi, malzeme biliminin önemli bir parçasıdır. Günümüzde kullanılan tüm metalik alaşımlar arasında, demir alaşımları (çelik, paslanmaz çelik, dökme demir, takım çeliği, alaşımlı çelikler) hem miktar hem de ticari değer bakımından en büyük oranı oluşturmaktadır.

Çeşitli oranlarda karbon ile alaşımlı demir, düşük, orta ve yüksek karbonlu çelikler verir. Bir demir-karbon alaşımı, karbon seviyesi % 0.01 ile % 2.00 arasındaysa, yalnızca çelik olarak kabul edilir. Çelikler için, çeliğin sertliği ve çekme mukavemeti, mevcut karbon miktarına bağlıdır, artan karbon seviyeleri de daha düşük süneklik ve tokluğa yol açar. Bununla birlikte, söndürme ve temperleme gibi ısıl işlem süreçleri bu özellikleri önemli ölçüde değiştirebilir. Dökme demir,% 2.00'den fazla,% 6.67'den az karbon içeren bir demir-karbon alaşımı olarak tanımlanır. Paslanmaz çelik, ağırlıkça % 10'dan fazla Krom alaşım içeriğine sahip normal bir çelik alaşımı olarak tanımlanır. Nikel ve Molibden tipik olarak paslanmaz çeliklerde de bulunur.

Diğer önemli metalik alaşımlar alüminyum, titanyum, bakır ve magnezyumdur. Bakır alaşımları uzun zamandır bilinmektedir (Tunç Çağı'ndan beri), diğer üç metalin alaşımları ise nispeten yakın zamanda geliştirilmiştir. Bu metallerin kimyasal reaktivitesi nedeniyle, gerekli elektrolitik ekstraksiyon işlemleri sadece nispeten yakın zamanda geliştirilmiştir. Alüminyum, titanyum ve magnezyum alaşımları, yüksek mukavemet-ağırlık oranları ve magnezyum durumunda elektromanyetik koruma sağlama yetenekleri nedeniyle de bilinir ve değerlenir. Bu malzemeler, havacılık endüstrisi ve bazı otomotiv mühendisliği uygulamaları gibi yüksek mukavemet/ağırlık oranlarının toplu maliyetten daha önemli olduğu durumlar için idealdir.

Seramikler ve camlar[değiştir | kaynağı değiştir]

Farklı tarzlarda seramikler.

Malzeme biliminin bir başka uygulaması, tipik olarak endüstriyel öneme sahip en kırılgan malzemeler olan seramik ve camların incelenmesidir. Birçok seramik ve cam, temel bir yapı taşı olarak SiO2 (silika) ile kovalent veya iyonik-kovalent bağlanma sergiler. Seramikler ham, ateşlenmemiş kil ile karıştırılmamalıdır genellikle kristal formda görülür. Ticari camların büyük çoğunluğu silika ile kaynaşmış bir metal oksit içerir. Cam hazırlamak için kullanılan yüksek sıcaklıklarda, malzeme soğuduktan sonra düzensiz bir duruma katılaşan viskoz bir sıvıdır. Pencere camları ve gözlükler önemli örneklerdir. Cam lifleri ayrıca uzun menzilli telekomünikasyon ve optik iletim için de kullanılır. Çizilmeye dayanıklı Corning Gorilla Glass, ortak bileşenlerin özelliklerini büyük ölçüde iyileştirmek için malzeme biliminin uygulanmasının iyi bilinen bir örneğidir.

Mühendislik seramikleri, yüksek sıcaklıklar, sıkıştırma ve elektriksel stres altında sertlikleri ve stabiliteleri ile bilinir. Alümina, silisyum karbür ve tungsten karbür, bir bağlayıcı ile sinterleme işleminde bileşenlerinin ince bir tozundan yapılır. Sıcak presleme daha yüksek yoğunluklu malzeme sağlar. Kimyasal buhar birikimi, bir seramiğin filmini başka bir malzemeye yerleştirebilir. Sermetler bazı metaller içeren seramik parçacıklarıdır. Aletlerin aşınma direnci, özellikleri değiştirmek için tipik olarak eklenen kobalt ve nikelin metal fazına sahip çimentolu karbürlerden elde edilir.

Polimerler[değiştir | kaynağı değiştir]

Çeşitli plastik türlerinden yapılmış bazı nesneler.

Polimerler de malzeme biliminin önemli bir parçasıdır. Polimerler yaygın olarak plastik diye adlandırdığımız malzemelerin ham maddesidir. Plastikler aslında işlem sırasında bir ya da daha fazla polimer veya katkı daha sonra en son haline bürünecek olan reçineye eklendikten sonra oluşan son ürünlerdir. Uzun zamandır var olan ve günümüzde yaygın kullanımda olan polimerler polietilen, polipropilen, PVC, polisitren, naylon, polyester, akrilik, poliüretanlar ve polikarbonatları içerir. Plastikler genellikle ticari eşya, özel ürün ve mühendislik plastikleri olarak sınıflandırılır.

PVC yaygın olarak kullanılır, pahalı değildir ve yıllık üretim miktarı fazladır. Yapay deriden elektriksel yalıtıma ve kablolamaya, ambalajlar ve konteynerlere kadar birçok uygulama dizisine elverişlidir. Fabrikasyonu ve işlenmesi basit ve iyi yapılandırılmıştır. PVC’nin çok yönlülüğü kabul ettiği geniş ölçüdeki akışkanlaştırıcı ve diğer katkı maddelerinden kaynaklanır. Polimer bilimindeki katkı ifadesi malzeme özelliklerini düzeltmek için polimer baza eklenen kimyasallara ve bileşenlere karşılık gelir.

Polikarbonatın normalde mühendislik plastiği olarak ele alınması gerekirdi. Mühendislik plastikleri üstün dayanıklılıklarına ve diğer özel malzeme özelliklerine göre değerlendirilir. Genellikle ticari eşya plastiklerinin aksine tek seferlik uygulamalarda kullanılmazlar. Özel ürün plastikleri çok yüksek dayanıklılık, elektriksel iletkenlik, elektrikli flor ışıklık, yüksek termal stabilite gibi eşsiz özellikleri olan malzemelerdir.

Plastiklerin çeşitleri arasındaki ayrım çizgisi malzemeye değil de özelliklerine ve uygulamalara dayalıdır. Örneğin polietilen (PE) kullan-at alışveriş torbaları ve çöp poşetleri yapmak için kullanılan ucuz, az sürtünmeli polimerdir ve ticari ürün plastiği olarak ele alınır. Öte yandan orta yoğunluktaki polietilen (MDPE) yer altı gaz ve su boruları için kullanılır ve çok yüksek mol kütleli polietilen olarak adlandırılan bir diğer çeşit de kalça eklemi implantlarında az sürtünmeli mil yuvası veya sanayi ekipmanları için kızak yayları olarak kullanılan mühendislik plastiğidir.

Kompozit malzemeler[değiştir | kaynağı değiştir]

Cam PE Termoplastik Kompozit Boru

Malzeme biliminin endüstrideki bir başka uygulaması da kompozit malzemeler yapmaktır. Bunlar iki veya daha fazla makroskobik fazdan oluşan yapılandırılmış malzemelerdir. Uygulamalar, çelik takviyeli beton gibi yapısal elemanlardan, mekiğin yüzeyini Dünya atmosferine yeniden girme ısısından korumak için kullanılan NASA'nın Uzay Mekiği termal koruma sisteminde önemli ve ayrılmaz bir rol oynayan ısı yalıtım karolarına kadar uzanmaktadır. Bir örnek, 1.510 °C'ye kadar yeniden giriş sıcaklıklarına dayanan ve uzay mekiğinin kanat ön kenarlarını ve burun kapağını koruyan açık gri malzeme olan güçlendirilmiş Karbon-Karbon'dur (RCC). RCC, grafit rayon bezinden yapılmış ve fenolik bir reçine ile emprenye edilmiş lamine bir kompozit malzemedir. Bir otoklavda yüksek sıcaklıkta kürlendikten sonra, laminat reçineyi karbona dönüştürmek için pirolize edilir, bir vakum odasında furfural alkol ile emprenye edilir ve furfural alkolü karbona dönüştürmek için kürlenmiş-pirolize edilir. Yeniden kullanım kabiliyeti için oksidasyon direnci sağlamak için, RCC'nin dış katmanları silisyum karbüre dönüştürülür.

Diğer örnekler televizyon setlerinin, cep telefonlarının ve benzerlerinin "plastik" kasalarında görülebilir. Bu plastik kılıflar genellikle kalsiyum karbonat tebeşir, talk, cam elyafı veya karbon fiberlerin ilave mukavemet, hacim veya elektrostatik dağılım için eklendiği akrilonitril bütadien stiren (ABS) gibi termoplastik bir matristen oluşan kompozit bir malzemedir. Bu ilaveler, amaçlarına bağlı olarak takviye lifleri veya dağıtıcılar olarak adlandırılabilir..

Metalurji ve malzeme mühendisliği[değiştir | kaynağı değiştir]

Metalurji ve malzeme mühendisliği günümüzde kimya, makine, inşaat, uzay-uçak, elektrik-elektronik, çevre ve tıp alanlarına yayılmış çok disiplinli bir bilim ve teknoloji dalı olarak gelişmesini sürdürmekte ve verimlilik, enerji ve hammadde üçlüsü ile uyum içinde olan üretim süreçlerinin sektöre kazandırılmasında önemli rol oynamaktadır. Son yıllarda metalurji ve malzeme mühendisliğindeki gelişmeler, genel olarak metalurjik proseslerin optimizasyonu, nümerik simülasyon ve modelleme üzerine yoğunlaşırken, çevresel metalurji uygulamalarında da, çevre kirliliğine yol açmayacak nitelikte atılabilir atık üretmek, de-metalize edilmiş (metal iyonlarından arındırılmış) çözeltiyi kullanılabilir su halinde sisteme geri döndürme şeklinde atık su de-metalizasyonu, ikincil kaynakların yeniden değerlendirilmesine yönelik reaktör ve proseslerin tasarımı (ve geliştirilmesi) gibi konular önde gelmektedir.

Enerji yoğun işletmelerin başında yer alan elektro-metalürji uygulamalarında ise, sonlu elemanlar yöntemiyle hücre dizaynlarında yapılan iyileştirmeler, kullanılan elektrot malzemelerinin yeniden tasarımı ve geliştirilmesi gibi konular önem kazanmaktadır. Yüksek kaliteye ve üstün özelliklere sahip karmaşık şekilli parçaların, toz metalürjisi yöntemleriyle istenilen toleranslarda ve minimum kayıpla ekonomik olarak imalinde önemli rol oynayan, nano boyutta toz ve toz karışımlarının hidro- ve/veya elektro-metalurjik yöntemlerle üretiminin yanı sıra, soy metaller metalurjisi içinde yer alan ve insan sağlığına zarar vermeyen altın ve altın alaşımlarının geliştirilmesi ve üretimleri de günümüz metalürji bilimi gündeminin ilk sıralarında karşımıza çıkmaktadır.

İnsanlık tarihini taş devrinden tunç devrine, oradan da demir devrine ulaştıran Metalurji "sanat"ı, bugün temel bilimlere dayalı ve çağdaş medeniyetin kuruluş ve gelişmesine büyük katkıları olan Metalurji ve malzeme mühendisliği mesleği adı altında bilimsel ve teknolojik bakımdan geniş bir alanı kapsar hale gelmiştir.

Tarihi açıdan metal, önceleri doğal halinde kullanılmış ve bu da nabit metallerin şekillendirilmesiyle mümkün olmuştur. İlk kullanılan nabit metaller, bakır ve altındır. Metalurjinin tarihi ile Anadolu medeniyetlerinin tarihsel gelişimi neredeyse özdeştir. Arkeolojik bulgular, bakır üretiminin ilk kez Anadolu ve İran topraklarında başladığını göstermektedir. Bakırı işlemek suretiyle, mızraklar ve çeşitli silahlar yapan insanoğlu daha sonraki yıllarda bakır ve kalayı karıştırarak bakırdan daha sert bir alaşım elde etmiştir. Anadolu'da kalay bulunmadığı için Hititler, bakır ile arseniği alaşımlandırmak suretiyle yeni bir alaşım bulmuşlar ve bu gelişmeler de tunç çağının başlangıcına yol açmıştır. Aynı şekilde ilk demir üretimi de MÖ 1500 yıllarında yine Anadolu'da gerçekleşmiştir.

Tarihçe[değiştir | kaynağı değiştir]

Dünya'da metalurji ve malzeme mühendisliği[değiştir | kaynağı değiştir]

Türkiye'de yaygın olarak kullanılan malzeme ve metalürji bölümlerinin ismi birçok ülkede MALZEME BİLİMİ ve MÜHENDİSLİĞİ olarak değiştirilmiştir. Özellikle Amerika Birleşik Devletleri'nde bu isim altında bir bölüm yoktur. Önceleri metalurji mühendisliği adı altında kurulan bölümler zamanla metalurji ve malzeme (Türkiye'de hâlen kullanılan) daha sonra malzeme ve metalurji (Birleşik Krallık) ve son olarak da malzeme bilimi ve mühendisliği (Amerika Birleşik Devletleri) bölümleri olarak isim değişikliğine gitmişlerdir. Malzeme adı alt dallarından olan metalürjiyi kapsamasına rağmen ağırlıklı eğitimi göstermek adına metalurji ismi Türkiye'de hâlen kullanılmaktadır.

Türkiye'de metalürji ve malzeme mühendisliği[değiştir | kaynağı değiştir]

Türkiye'de metalurji ve malzeme mühendisliği eğitimi metalurji mühendisliği adı altında İTÜ'de Maden Fakültesi'nde başlamıştır. Maden Fakültesi'nde 1957 yılında Üretim Metalurjisi ve Fiziksel Metalurji kürsüleri kurulmuş ve eğitimini ABD MIT'de tamamlamış olan Doç. Dr. Recep Safoğlu'nun fakülte bünyesine katılması ile Metalurji eğitimi başlatılmıştır.[3] 1961-62 akademik yılında Maden Fakültesi bünyesindeki bu iki kürsü "Metalurji Bölümü" olarak organize edilmiş ve ilk Metalurji Mühendisliği eğitimi başlatılmıştır. O yıllarda 3. sınıfa geçmiş öğrencilerden bu bölüme ayrılanlar eğitimlerinin son iki yılını bu bölümde tamamlayarak 1963-64 yılında Metalurji Mühendisi olarak mezun olmuşlardır. 2012 yılı itibarı ile 25 Türk üniversitesinde bu bölüm adı altında yer alırken 5 üniversitemizde ise Malzeme Bilimi ve Mühendisliği bölümü adı altında eğitim ve araştırma çalışmalarını sürdürmektedir..[4] Metalurji ve Malzeme Mühendislerinin yasal meslek örgütü Metalurji Mühendisleri Odası'dır.[5]

Öğretim programı[değiştir | kaynağı değiştir]

Metalurji ve malzeme mühendisliği programında eğitim süresi 4 yıldır. Programda mühendisliğin diğer bütün dallarında olduğu gibi, fizik, kimya ve matematikle yakından ilişkili dersler vardır. Öğretimin birinci yılında temel bilimlere ilişkin dersler okutulurken ilerleyen yıllarda demir-çelik ve demir dışı metallerin üretimi, toz metalurjisi, tahribatsız malzeme muayeneleri, ısıl işlemler, alaşımlar gibi alana özgü konular, kuramsal ve uygulamalı olarak verilir. Ayrıca yaz stajı da zorunludur.

Metalurji ve malzeme mühendisliği programında eğitim görmek isteyenlerin özellikle analitik düşünme ve tasarım yeteneklerine sahip olması, kimya, fizik, matematik ve yerbilimlerine ilgili ve bu alanlarda iyi yetişmiş olmaları gerekir.

Alınan unvan ve yapılan işler[değiştir | kaynağı değiştir]

Bu programı bitirenler "Metalurji ve Malzeme Mühendisi veya Malzeme Bilimi ve Mühendisi" unvanını alırlar. Metalurji ve malzeme mühendisleri (veya malzeme bilimi ve mühendisleri), herhangi bir malzemenin üretimi için gerekli planları yapar ve uygulanmasını denetlerler. Ayrıca, mühendislik tasarım grubunun üyesi olarak, malzeme seçme, önerme ve kullanımının denetimi gibi görevlerinin yanı sıra özel amaçlara yönelik malzemeler tasarlarlar.

Metalurji ve malzeme mühendisleri (veya malzeme bilimi ve mühendisleri), aşağıda belirtilen sanayi dallarında faaliyet gösteren kamu veya özel sektör kuruluşlarında çalışabilecekleri gibi kendi işlerini kurma imkânına da sahiptirler.

  • Metal sanayi (Demir-çelik, demir-dışı metal üretim ve Döküm sanayi)
  • Seramik sanayi (İleri teknoloji seramikleri, geleneksel seramikler ve cam)
  • Polimer sanayi
  • Yarı-iletken sanayi
  • Kaplama Sanayi
  • Savunma sanayi
  • Makine imalat sanayi
  • Otomotiv ve otomotiv yan sanayi
  • Uçak ve gemi imalat sanayi
  • Kaynak malzemeleri üretimi sanayi
  • Metal şekillendirme ve işleme sanayi
  • Yüzey işlemleri ve kaplama sanayi
  • Elektrik-elektronik malzeme üretimi
  • Manyetik malzeme üretimi
  • Biomedikal malzeme üretimi
  • Kalite kontrol ve gözetim şirketleri
  • Tahribatsız muayene

Metalürjinin malzeme bilimi ve mühendisliğiyle ilgisi[değiştir | kaynağı değiştir]

Türkiye'de var olan çoğu metalurji (metal bilimi) mühendislikleri zamanla bilimsel ve teknolojik gelişmelere ayak uydurarak, disiplinleri genişletip Malzeme Bilimi ile entegre hale getirmişlerdir. Aynı zamanda bazı seramik mühendislikleri ise ya Metalurji Mühendisliği bölümleriyle birleştirme yoluyla ya da doğrudan Malzeme Bilimi ve Mühendisliğine çevrilmiştir. Metalurji Bilimi, malzeme biliminin alt dalıdır. Yeni açılan bölümlerde Malzeme Bilimi ve Mühendisliği diye geçmektedir. Ancak üniversitelerin programları farklılık gösterebilir yani Malzeme Bilimi'nin farklı alanlarına ağırlık verebilir; örneğin, metalürji, seramik, nanoteknoloji, biyomühendislik gibi..

Diğer alanlarla ilişkiler[değiştir | kaynağı değiştir]

Malzeme bilimi 1960’lı yıllardan başlayarak gelişti çünkü farkına varıldı ki yeni malzemeler yaratmak, keşfetmek ve tasarlamak için birleşik biçimde yaklaşılması gerekir. Böylece malzeme bilimi ve mühendisliği metalurji, katı hal fiziği, kimya, kimya mühendisliği, makine mühendisliği ve elektrik mühendisliği gibi çeşitli alanların kesişiminde ortaya çıktı.

Bu alan doğal olarak bilimler arası bir branş ve malzeme bilimciler/mühendisleri fizikçilerin, kimyagerlerin ve mühendislerin yöntemlerinin farkında olmalı ve faydalanmalı. Dolayısıyla bu alan diğerleriyle yakın bir ilişki sürdürür. Ayrıca birçok fizikçi, kimyager ve mühendis kendilerini malzeme biliminde çalışırken bulurlar.

Fizik ve malzeme bilimindeki bu örtüşme malzemelerin fiziksel özellikleriyle ilgilenen malzeme fiziği yan dalının oluşmasına yol açtı. Bu yaklaşım genel olarak daha makroskopik ve yoğun madde fiziğinden daha çok uygulanır.

Malzeme bilimi ve mühendisliği alanı mühendislik açısından olduğu kadar bilimsel açıdan da öneme sahip. Yeni malzemeler keşfederken daha önce gözlemlenmemiş bir fenomenle karşılaşılabilir. Dolayısıyla malzemelerle çalışırken keşfedilecek birçok bilimsel olgu var. Malzeme bilimi ayrıca yoğun madde fiziği teorileri için test imkânı sağlar.

Bir mühendis için malzeme büyük önem taşır. Uygun malzemenin kullanımı sistem tasarlarken çok önemlidir ve bu yüzden mühendisler daima malzemelerle ilgilenir. Dolayısıyla malzeme bilimi mühendislik eğitiminde giderek önemli hale geliyor.

Ayrıca bakınız[değiştir | kaynağı değiştir]

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ a b Jr, William D. Callister; Rethwisch, David G. (5 Şubat 2020). Callister's Materials Science and Engineering (İngilizce). John Wiley & Sons. ISBN 978-1-119-45391-8. 22 Haziran 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Haziran 2023. 
  2. ^ "Materials science". 20 Temmuz 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Temmuz 2023. 
  3. ^ "Arşivlenmiş kopya". 5 Ekim 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Temmuz 2018. 
  4. ^ "Arşivlenmiş kopya". 28 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Şubat 2021. 
  5. ^ "Arşivlenmiş kopya". 17 Haziran 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Temmuz 2018. 

Dış bağlantılar[değiştir | kaynağı değiştir]