Öklid

Vikipedi, özgür ansiklopedi
Şuraya atla: kullan, ara
Öklid
Euklid-von-Alexandria 1.jpg
Doğum MÖ 330
İskenderiye, Mısır
Ölüm MÖ 275
Milliyeti Yunan
Dalı Matematik
Önemli başarıları Öklid bağıntıları (ögeleri)

Öklid (Yunanca: Εὐκλείδης — Eukleídēs) MÖ 330 - 275 yılları arasında yaşamış İskenderiyeli bir matematikçidir.

Öklid gelmiş geçmiş matematikçilerin içinde adı geometri ile en çok özdeştirilen kişidir. Geometri dünyasında kapladığı bu seçkin yeri kendisinin büyük bir matematikçi olmasından çok, geometrinin başlangıcından kendi zamanına kadar bilinen ismi ile Öğeler adını taşıyan kitabında toplamıştır. Öklid derlemesinin tutarlı bir bütün olmasını sağlamak için, kanıt gerektirmeyen apaçık gerçekler olarak 5 aksiyom ortaya koyar. Diğer bütün önermeleri bu aksiyomlardan çıkarır.

Eğitimini Akademi'de tamamladıktan sonra İskenderiye’de büyük bir matematik okulu kuran Öklid, çağlar boyu matematikle ilgilenen hemen herkesin gözdesi olmuştur. Geometriyi ispat ve aksiyomlara dayalı bir dizge olarak işleyen 13 ciltlik kitabı “Elementler” bu alandaki ilk kapsamlı çalışmaydı. Kendinden önceki Tales, Pisagor, Platon, Aristoteles gibi matematikçi ve geometricilerin çalışmalarını temel alan Öklid’in bu yapıtı, iki bin yıl boyunca önemli bir başvuru kaynağı olarak kullanılmıştır. Düzlem geometrisi, aritmetik, sayılar kuramı, irrasyonel sayılar ve katı cisimler geometrisi Öklid’in kitabında ele aldığı başlıca konulardı. Öklid’in her önermeyi daha önceki önermelerden çıkarma yöntemi, kendisine atfedilen “geometrinin babası” sözünü de haklı kılar. Kitapta yer alan aksiyomlara, teoremlere ve ispatlara dayanan sentez yöntemlerinin Batı düşüncesi üzerindeki etkisinin Kitabı Mukaddes'ten sonra ikinci sırada yer aldığı söylenir. Russell, Öğeler'in bugüne kadar yazılmış en büyük kitap olduğunu ileri sürer. Einstein ise “Gençliğinde bu kitabın büyüsüne kapılmamış bir kimse, kuramsal bilimde önemli bir atılım yapabileceği hayaline kapılmasın” der.

Öklid geometrisi 19. yüzyılın başına kadar rakipsiz kaldı. Hatta 20. yüzyılın ortalarına kadar bile orta öğretimde geometri, Öklid'in öğelerine bağlı olarak okutuldu.

Öklid'in yaşamı konusunda hemen,hemen hiçbir şey bilinmiyor. Önceleri bir Yunan kenti olan Megara'da doğduğu sanıldıysa da, sonradan Megaralı Öklid'in, Öğeler'in yazarı İskenderiyeli Öklid'den yüzyıl kadar önce yaşamış olan bir felsefeci olduğu ortaya çıkmıştır.

Öklid üzerinde çalıştığı proje hakkında diyorki: "bir doğru istenildiği kadar uzatabilir." ve "İki noktadan bir ve yalnız bir doğru gecer."


Öklid

Öklid'in aksiyomları[değiştir | kaynağı değiştir]

İngilizcede postula ve aksiyom kelimeleri aynı anlama gelebilmektedir. O yüzden bazı kaynaklarda geçen postula ve aksiyom adı altında verilen farklı tanımlamalarda sorunlar vardır. Birçok Türkçe eserde karşılaşılabilen bir sorundur bu. İngilizce vikipedi de [1] postula ve aksiyom şeklinde iki ayrı şeyden bahsedilmemektedir. Bunun yerine postulalardan (aksiyomlardan) ve buna ek olarak ortak kanılardan (common notions) bahsedilmektedir.

Öklid'in postulaları veya aksiyomları:

  1. Herhangi bir noktadan herhangi başka bir noktaya bir düz doğru çizmek mümkündür.
  2. Bir tane doğru parçasını her iki yöne de sürekli bir şekilde uzatmak mümkündür.
  3. Herhangi bir merkez ve herhangi bir yarıçap ile bir çember tanımlamak mümkündür.
  4. Bütün dik açıların birbirine eşit olduğu doğrudur.
  5. Eğer iki doğru ile keşisen bir doğru çizilirse, iki doğrunun birbirine bakan tarafında yer alan ve onları kesen doğrunun bir tarafında kalan iki açının toplamı iki dik açıdan küçükse bu iki doğru açıların toplamının iki dik açıdan az olduğu tarafta uzatılmaya devam ederlerse ilerde bir noktada kesişecekleri doğrudur. (Bu postula paralel doğrular kesişmez şeklinde bilinen postuladır.)

Ortak kanılar:

  1. Bir şeye eşit olan başka şeyler birbirlerine de eşittirler.
  2. Eğer eşit miktarlara eşit miktarlar eklenirse, elde edilen bütünler de birbirlerine eşittir.
  3. Eğer eşit miktalardan eşit miktarlar çıkarılırsa, kalanlar da birbirlerine eşittir.
  4. Birbirleriyle çakışan (özelikleri açısandan örtüşen) şeyler birbirlerine eşittir.
  5. Bütün parçadan büyüktür.

Kaynakça[değiştir | kaynağı değiştir]

Ayrıca bakınız[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]