Kategori teorisi

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

Kategori teorisi (yeni Türkçe: Ulam kuramı), matematik yapılar ve bunlar arasındaki ilişkilerle soyut olarak ilgilenen bir matematik kuramıdır. Yarı mizahi "soyut anlamsızlık" olarak da bilinir.

Tarihi[değiştir | kaynağı değiştir]

Bir kategori birbirileriyle ilişkili matematiksel nesneler sınıfının (örneğin grupların) özünü yakalamaya çalışır. Geleneksel olarak yapıldığı gibi tekil nesneler (gruplar) üzerine yoğunlaşmak yerine, bu nesneler arasındaki yapı muhafaza edici gönderimler (yani morfizimler) üzerine yoğunlaşır. Gruplar örneğinde bu gönderimler grup homomorfizmleridir. Bu şekilde farklı kategorileri funktorlar aracılığıyla ilişkilendirmek mümkündür. Funktorlar, bir kategorinin her nesnesini diğer kategorinin bir nesnesiyle ve bir kategorideki morfizmi diğerindeki bir morfizme ilişkilendiren fonksiyonların bir genelleştirmesidir. Sıkça topolojik uzayın temel grubu gibi "doğal yapılar" funktorlar şeklinde ifade edilebilir. Bunun ötesinde, bu tip yapılar "doğal bir bağıntıya" sahiptir ve bir funktoru diğerine ilişkilendirme yolu olan doğal transformasyon konseptine olanak tanır.

Kategoriler, funktorlar ve doğal transformasyonlar Samuel Eilenberg ve Saunders MacLane tarafından 1945 yılında ortaya atılmıştır. Başlangıçta bu nosyonlar, topolojide, özellikle cebirsel topolojide, geometrik ve sezgisel bir kavram olan homolojiden aksiyomatik bir yaklaşım olan homoloji teorisine geçişte önemli bir bölümdür. Başkalarının yanı sıra Ulam tarafından (ya da kendisine atfen), benzer düşüncelerin 1930'ların sonunda Polonya okulunda ortaya çıktığı iddia edilmiştir.

Eilenberg/MacLane, kendi ifadelerine göre, bu kuramı geliştirirken doğal transformasyonları anlama çabasındaydılar. Bunu yapabilmek için funktorlar tanımlamak, funktorları tanımlamak için ise kategoriler tanımlamak gerekiyordu.

Günümüzde bu kuram, matematiğin tüm alanlarında uygulanmaktadır.

Kaynakça[değiştir | kaynağı değiştir]

  • William Lawvere and Steve Schanuel: Conceptual Mathematics: A First Introduction to Categories, Cambridge University Press, Cambridge, 1997.
  • Saunders Mac Lane: Categories for the Working Mathematician, 2nd edition. Graduate Texts in Mathematics 5, Springer 1998
  • Francis Borceux: Handbook of Categorical Algebra, volumes 50-52 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1994.

Dış bağlantı[değiştir | kaynağı değiştir]

  • Alexandre Stefanov'un serbest çevrimiçi matematik kaynakları listesinin Kategori Teorisi bölümü.