İçeriğe atla

Matematik konularının listesi

Kontrol Edilmiş
Vikipedi, özgür ansiklopedi

Matematik konularının listesi, matematik ile ilgili çeşitli konuları kapsar. Bu listelerden bazıları yüzlerce makaleye bağlantı içerir; bazıları sadece birkaç tane ile bağlantılıdır. Bu makale, aynı içeriği, göz atmaya daha uygun bir şekilde organize halde bir araya getirmektedir. Listeler, temel ve ileri matematik, metodoloji, matematiksel ifadeler, integraller, genel kavramlar, matematiksel nesneler ve referans tablolarının özelliklerini kapsar. Ayrıca insanların adını taşıyan denklemleri, matematiksel toplulukları, matematikçileri, matematik dergilerini ve meta listeleri de kapsar.

Bu listenin amacı, American Mathematical Society tarafından formüle edilen Matematik Konu Sınıflandırmasına benzer değildir. Birçok matematik dergisi, araştırma makalelerinin ve açıklayıcı makalelerin yazarlarından, makalelerinde Matematik Konu Sınıflandırmasındaki konu kodlarını listelemelerini ister. Bu şekilde listelenen konu kodları, iki ana gözden geçirme veritabanı olan Mathematical Reviews ve Zentralblatt MATH tarafından kullanılmaktadır. Bu liste, üstel konuların listesi ve faktöryel ve binom konuların listesi gibi bu tür bir sınıflandırmaya uymayan bazı öğeler içerir; bu, kapsama alanlarının çeşitliliği okuyucuyu şaşırtabilir.

Temel matematik

[değiştir | kaynağı değiştir]

Bu dal tipik olarak orta öğretimde veya üniversitenin ilk yılında öğretilir.

İleri matematik alanları

[değiştir | kaynağı değiştir]

Ayrıca bkz. Matematiğin dalları (alanları) ve Matematik alanları sözlüğü.

Kabaca bir kılavuz olarak, bu liste, gerçekte bu dallar örtüşse ve iç içe geçse de, saf ve uygulamalı bölümlere ayrılmıştır.

Cebir, kümeler ve belirli aksiyomları karşılayan bu kümeler üzerinde tanımlanmış işlemlerden oluşan cebirsel yapılar hakkındaki çalışmaları içerir. Cebir alanı ayrıca hangi yapının çalışıldığına göre bölünmüştür; Örneğin, grup teorisi grup adı verilen bir cebirsel yapısı ile ilgilidir.

Kalkülüs (Hesap) ve analiz

[değiştir | kaynağı değiştir]
Beş adımda kare dalganın Fourier serisi yaklaşımı.

Kalkülüs, reel sayıların fonksiyonlarının limitlerinin, türevlerinin ve integrallerinin hesaplanmasını ve özellikle anlık değişim oranlarını inceler. Analiz, kalkülüsten gelişmiştir.

Geometri ve topoloji

[değiştir | kaynağı değiştir]
Ford çemberleri - Her bölüme en düşük terimlerle bir çember yerleştirilir. Her biri kesmeden komşularına dokunur.

Geometri başlangıçta daire ve küp gibi uzamsal şekillerin incelenmesidir, ancak oldukça genelleştirilmiştir. Geometriden geliştirilen topoloji; boyutlar gibi gerilip bükülerek şekiller deforme edildiğinde bile değişmeyen özelliklere bakar.

Kombinatorik, ayrık (ve genellikle sonlu) nesnelerin incelenmesiyle ilgilidir. Kapsam, belirli kriterleri karşılayan nesnelerin "sayılması" (birerlemeli kombinatorik), kriterlerin ne zaman karşılanacağına karar verilmesi ve kriterleri karşılayan nesnelerin oluşturulması ve analiz edilmesi (kombinatoryal tasarımlar ve matroid teorisinde olduğu gibi), "en büyük", "en küçük" bulunması veya "optimal" nesneler (aşırı kombinatorik ve kombinatoryal optimizasyon) ve bu nesnelerin sahip olabileceği cebirsel yapıları bulma (cebirsel kombinatorik) gibi konuları içerir.

Venn diyagramları, küme teorik, matematiksel veya mantıksal ilişkilerin örnekleridir.

Mantık, matematiksel mantığın ve matematiğin geri kalanının altında yatan temeldir. Geçerli muhakemeyi biçimlendirmeye ve nedenselleştirmeye çalışır. Özellikle bir ispatı neyin oluşturduğunu tanımlamaya çalışır.

Sayılar teorisi

[değiştir | kaynağı değiştir]

Sayıların özellikleri ve ilişkileri ile, özellikle pozitif tam sayılarla ilgilenen matematik dalıdır. Sayı teorisi, esas olarak tam sayıların ve tam sayı değerli fonksiyonların çalışılmasına adanmış bir saf matematik dalıdır. Alman matematikçi Carl Friedrich Gauss, "Matematik bilimlerin kraliçesidir ve sayı teorisi matematiğin kraliçesidir" dedi. Sayı teorisi ayrıca doğal veya tam sayıları da inceler. Sayı teorisindeki temel kavramlardan biri asal sayılardır ve basit görünen ancak çözümü matematikçilerden kaçmaya devam eden asal sayılar hakkında birçok soru vardır.

Uygulamalı matematik

[değiştir | kaynağı değiştir]

Dinamik sistemler ve diferansiyel denklemler

[değiştir | kaynağı değiştir]
Sürekli zamanlı dinamik bir sistemin faz portresi, Van der Pol osilatörü.

Diferansiyel denklem, bilinmeyen bir fonksiyonu ve türevlerini içeren bir denklemdir.

Dinamik bir sistemde sabit bir kural, geometrik bir uzaydaki bir noktanın zamana bağlılığını tanımlar. Bir saat sarkacının sallanmasını, bir borudaki suyun akışını veya her bahar bir göldeki balık sayısını tanımlamak için kullanılan matematiksel modeller dinamik sistemlere örnektir.

Matematiksel fizik

[değiştir | kaynağı değiştir]

Matematiksel fizik, "matematiğin fizikteki problemlere uygulanması, bu tür uygulamalar için uygun matematiksel yöntemlerin geliştirilmesi ve fiziksel teorilerin formülasyonu" ile ilgilenir.1

Hesaplama teorisi

[değiştir | kaynağı değiştir]
Işın izleme, hesaplamalı matematiğe dayalı bir süreçtir.

Matematik ve hesaplamanın alanları hem bilgisayar bilimi, algoritmalar ve veri yapılarının incelenmesi hem de matematik, bilim ve mühendislikteki problemleri çözmek için algoritmik yöntemlerin incelenmesi olan bilimsel hesaplamada kesişir.

Bilgi teorisi ve sinyal işleme

[değiştir | kaynağı değiştir]

Bilgi teorisi, bilginin ölçülmesini içeren uygulamalı matematik ve Elektrik mühendisliğinin bir dalıdır. Tarihsel olarak, bilgi teorisi, verileri sıkıştırmak ve güvenilir bir şekilde iletmek için temel sınırlar bulmak amacıyla geliştirildi.

Sinyal işleme, sinyallerin analizi, yorumlanması ve manipülasyonudur. İlgi duyulan sinyaller arasında ses, görüntüler, EKG gibi biyolojik sinyaller, radar sinyalleri ve diğerleri bulunur. Bu tür sinyallerin işlenmesi, filtreleme, depolama ve yeniden yapılandırma, bilgilerin gürültüden ayrılması, sıkıştırma ve Öznitelik çıkarımını içerir.

Olasılık ve istatistik

[değiştir | kaynağı değiştir]
"Çan eğrisi" - normal dağılımın olasılık yoğunluk fonksiyonu.

Olasılık teorisi, belirsiz olayların veya bilgilerin matematiğinin biçimselleştirilmesi ve incelenmesidir. İlgili matematiksel istatistik alanı matematikle birlikte istatistiksel teoriyi geliştirir. İstatistik, veri toplamak ve analiz etmekle ilgilenen bilim dalı, özerk bir disiplindir (ve uygulamalı matematiğin bir alt disiplini değildir).

Oyun teorisi, formelleştirilmiş teşvik yapıları ("oyunlar") ile etkileşimleri incelemek için modelleri kullanan bir matematik dalıdır. Ekonomi, evrimsel biyoloji, siyaset bilimi, sosyal psikoloji ve askeri strateji dahil olmak üzere çeşitli alanlarda uygulamaları vardır.

Yöneylem araştırması

[değiştir | kaynağı değiştir]

Yöneylem araştırması, tipik olarak gerçek dünya sistemlerinin performansını iyileştirme veya optimize etme amacıyla, karar vermeye yardımcı olmak için matematiksel modellerin, istatistiklerin ve algoritmaların incelenmesi ve kullanılmasıdır.

Matematiksel ifadeler

[değiştir | kaynağı değiştir]

Matematiksel bir ifade, bazı matematiksel gerçeklerin, formüllerin veya yaplarının bir önermesi veya iddiası anlamına gelir. Bu tür ifadeler aksiyomları ve bunlardan kanıtlanabilecek teoremleri, kanıtlanmamış veya hatta kanıtlanamayan varsayımları ve ayrıca matematiksel olarak ifade edilebilen soruların cevaplarını hesaplamak için algoritmaları içerir.

Genel kavramlar

[değiştir | kaynağı değiştir]

Matematiksel nesneler

[değiştir | kaynağı değiştir]

Matematiksel nesneler arasında sayılar, fonksiyonlar, kümeler, şu veya bu türden "uzaylar" olarak adlandırılan çok çeşitli şeyler, halkalar, gruplar veya alanlar (cisimler) gibi cebirsel yapılar ve diğer birçok şey bulunur.

İnsanların adını taşıyan denklemler

[değiştir | kaynağı değiştir]

Matematik hakkında

[değiştir | kaynağı değiştir]

Matematikçiler

[değiştir | kaynağı değiştir]

Matematikçiler matematiğin tüm farklı alanlarında çalışır ve araştırma yapar. Matematikte yeni keşiflerin yayınlanması, çoğu matematiğe adanmış ve çoğu matematiğin uygulandığı konulara (teorik bilgisayar bilimi ve teorik fizik gibi) ayrılmış yüzlerce bilimsel dergide büyük bir hızla devam etmektedir.

Belirli matematikçilerin çalışmaları

[değiştir | kaynağı değiştir]

Referans tabloları

[değiştir | kaynağı değiştir]

Analizde, bir fonksiyonun integrali alan, kütle, hacim, toplam ve totalin bir genellemesidir. Aşağıdaki sayfalarda birçok farklı fonksiyonun integralleri listelenmektedir.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • ^Not 1: Definition from the Journal of Mathematical Physics [1].

Dış bağlantılar ve kaynakça

[değiştir | kaynağı değiştir]