İçeriğe atla
Kenar çubuğunu aç/kapat
Ara
Hesap oluştur
Oturum aç
Kişisel araçlar
Hesap oluştur
Oturum aç
Çıkış yapmış editörler için sayfalar
daha fazla bilgi
Katkılar
Mesaj
Gezinti
Anasayfa
Hakkımızda
İçindekiler
Rastgele madde
Seçkin içerik
Yakınımdakiler
Katılım
Bağış yapın
Deneme tahtası
İş birliği projesi
Köy çeşmesi
Son değişiklikler
Dosya yükle
Topluluk portali
Wikimedia dükkânı
Yardım
Araçlar
Sayfaya bağlantılar
İlgili değişiklikler
Özel sayfalar
Kalıcı bağlantı
Sayfa bilgisi
Bu sayfayı kaynak göster
Vikiveri ögesi
Yazdır/dışa aktar
Bir kitap oluştur
PDF olarak indir
Basılmaya uygun görünüm
Diller
Bu Vikipedi sürümündeki dil bağlantıları sayfanın en yukarısında, madde başlığının sağ tarafında yer alıyor.
Yukarı gidin
.
İçindekiler
kenar çubuğuna taşı
gizle
Giriş
1
Ayrıca bakınız
İçindekiler tablosunu değiştir
İçindekiler tablosunu değiştir
Rasyonel fonksiyonların integralleri
34 dil
العربية
Български
Bosanski
Català
کوردی
Čeština
Чӑвашла
English
Esperanto
Español
Euskara
فارسی
Français
Galego
हिन्दी
Hrvatski
Հայերեն
Bahasa Indonesia
İtaliano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenščina
Српски / srpski
தமிழ்
Українська
Tiếng Việt
中文
Bağlantıları değiştir
Madde
Tartışma
Türkçe
Oku
Değiştir
Kaynağı değiştir
Geçmişi gör
Daha fazla
Oku
Değiştir
Kaynağı değiştir
Geçmişi gör
Vikipedi, özgür ansiklopedi
Bu madde
hiçbir
kaynak
içermemektedir
.
Lütfen
güvenilir kaynaklar ekleyerek
madde içeriğinin geliştirilmesine
yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve
kaldırılabilir
.
Kaynak ara:
"Rasyonel fonksiyonların integralleri"
–
haber
·
gazete
·
kitap
·
akademik
·
JSTOR
(
Aralık 2015
)
(
Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin
)
Aşağıdaki liste
rasyonel fonksiyonların
integrallerini
vermektedir
∫
(
a
x
+
b
)
n
d
x
=
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
(
n
≠
−
1
(for )
{\displaystyle \int (ax+b)^{n}dx={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\text{( }}n\neq -1{\text{(for )}}\,\!}
∫
d
x
a
x
+
b
=
1
a
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {dx}{ax+b}}={\frac {1}{a}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
n
d
x
=
a
(
n
+
1
)
x
−
b
a
2
(
n
+
1
)
(
n
+
2
)
(
a
x
+
b
)
n
+
1
(for
n
∉
{
−
2
,
−
1
}
)
{\displaystyle \int x(ax+b)^{n}dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\text{(for }}n\not \in \{-2,-1\}{\text{)}}}
∫
x
a
x
+
b
d
x
=
x
a
−
b
a
2
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {x}{ax+b}}dx={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
2
d
x
=
b
a
2
(
a
x
+
b
)
+
1
a
2
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {x}{(ax+b)^{2}}}dx={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
n
d
x
=
a
(
1
−
n
)
x
−
b
a
2
(
n
−
1
)
(
n
−
2
)
(
a
x
+
b
)
n
−
1
(for
n
∉
{
1
,
2
}
)
{\displaystyle \int {\frac {x}{(ax+b)^{n}}}dx={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\text{(for }}n\not \in \{1,2\}{\text{)}}}
∫
x
2
a
x
+
b
d
x
=
1
a
3
(
(
a
x
+
b
)
2
2
−
2
b
(
a
x
+
b
)
+
b
2
ln
|
a
x
+
b
|
)
{\displaystyle \int {\frac {x^{2}}{ax+b}}dx={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)}
∫
x
2
(
a
x
+
b
)
2
d
x
=
1
a
3
(
a
x
+
b
−
2
b
ln
|
a
x
+
b
|
−
b
2
a
x
+
b
)
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}dx={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)}
∫
x
2
(
a
x
+
b
)
3
d
x
=
1
a
3
(
ln
|
a
x
+
b
|
+
2
b
a
x
+
b
−
b
2
2
(
a
x
+
b
)
2
)
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}dx={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)}
∫
x
2
(
a
x
+
b
)
n
d
x
=
1
a
3
(
−
1
(
n
−
3
)
(
a
x
+
b
)
n
−
3
+
2
b
(
n
−
2
)
(
a
x
+
b
)
n
−
2
−
b
2
(
n
−
1
)
(
a
x
+
b
)
n
−
1
)
(for
n
∉
{
1
,
2
,
3
}
)
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}dx={\frac {1}{a^{3}}}\left(-{\frac {1}{(n-3)(ax+b)^{n-3}}}+{\frac {2b}{(n-2)(ax+b)^{n-2}}}-{\frac {b^{2}}{(n-1)(ax+b)^{n-1}}}\right)\qquad {\text{(for }}n\not \in \{1,2,3\}{\text{)}}}
∫
d
x
x
(
a
x
+
b
)
=
−
1
b
ln
|
a
x
+
b
x
|
{\displaystyle \int {\frac {dx}{x(ax+b)}}=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
d
x
x
2
(
a
x
+
b
)
=
−
1
b
x
+
a
b
2
ln
|
a
x
+
b
x
|
{\displaystyle \int {\frac {dx}{x^{2}(ax+b)}}=-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
d
x
x
2
(
a
x
+
b
)
2
=
−
a
(
1
b
2
(
a
x
+
b
)
+
1
a
b
2
x
−
2
b
3
ln
|
a
x
+
b
x
|
)
{\displaystyle \int {\frac {dx}{x^{2}(ax+b)^{2}}}=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)}
∫
d
x
x
2
+
a
2
=
1
a
arctan
x
a
{\displaystyle \int {\frac {dx}{x^{2}+a^{2}}}={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!}
∫
d
x
x
2
−
a
2
=
−
1
a
artanh
x
a
=
1
2
a
ln
a
−
x
a
+
x
(for
|
x
|
<
|
a
|
)
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\operatorname {artanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad {\text{(for }}|x|<|a|{\text{)}}\,\!}
∫
d
x
x
2
−
a
2
=
−
1
a
arcoth
x
a
=
1
2
a
ln
x
−
a
x
+
a
(for
|
x
|
>
|
a
|
)
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\operatorname {arcoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad {\text{(for }}|x|>|a|{\text{)}}\,\!}
∫
d
x
a
x
2
+
b
x
+
c
=
2
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(for
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\text{(for }}4ac-b^{2}>0{\text{)}}}
∫
d
x
a
x
2
+
b
x
+
c
=
2
b
2
−
4
a
c
artanh
2
a
x
+
b
b
2
−
4
a
c
=
1
b
2
−
4
a
c
ln
|
2
a
x
+
b
−
b
2
−
4
a
c
2
a
x
+
b
+
b
2
−
4
a
c
|
(for
4
a
c
−
b
2
<
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {b^{2}-4ac}}}\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\text{(for }}4ac-b^{2}<0{\text{)}}}
∫
d
x
a
x
2
+
b
x
+
c
=
−
2
2
a
x
+
b
(for
4
a
c
−
b
2
=
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}=-{\frac {2}{2ax+b}}\qquad {\text{(for }}4ac-b^{2}=0{\text{)}}}
∫
x
a
x
2
+
b
x
+
c
d
x
=
1
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
b
2
a
∫
d
x
a
x
2
+
b
x
+
c
{\displaystyle \int {\frac {x}{ax^{2}+bx+c}}dx={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(for
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\text{(for }}4ac-b^{2}>0{\text{)}}}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
b
2
−
4
a
c
artanh
2
a
x
+
b
b
2
−
4
a
c
(for
4
a
c
−
b
2
<
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\text{(for }}4ac-b^{2}<0{\text{)}}}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
(
2
a
x
+
b
)
(For
4
a
c
−
b
2
=
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}\qquad {\text{(For }}4ac-b^{2}=0{\text{)}}}
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
=
2
a
x
+
b
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
+
(
2
n
−
3
)
2
a
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
−
1
{\displaystyle \int {\frac {dx}{(ax^{2}+bx+c)^{n}}}={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}\,\!}
∫
x
(
a
x
2
+
b
x
+
c
)
n
d
x
=
b
x
+
2
c
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
−
b
(
2
n
−
3
)
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
−
1
{\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}dx={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}\,\!}
∫
d
x
x
(
a
x
2
+
b
x
+
c
)
=
1
2
c
ln
|
x
2
a
x
2
+
b
x
+
c
|
−
b
2
c
∫
d
x
a
x
2
+
b
x
+
c
{\displaystyle \int {\frac {dx}{x(ax^{2}+bx+c)}}={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫
x
2
r
+
y
2
r
=
r
{\displaystyle \int {\frac {x^{2}}{r}}+{\frac {y^{2}}{r}}=r}
∫
|
x
|
+
|
y
|
=
|
n
|
{\displaystyle \int \ |x|+|y|=|n|}
Ayrıca bakınız
[
değiştir
|
kaynağı değiştir
]
İntegral tablosu
Kategori
:
İntegral listeleri
Kesirli fonksiyonlar
Gizli kategori:
Kaynakları olmayan maddeler Aralık 2015