Fonksiyon

Vikipedi, özgür ansiklopedi
Şuraya atla: kullan, ara

Fonksiyon (Fransızca), İşlev (Türkçe) matematikte değişken sayıları girdi olarak kabul edip bunlardan bir çıktı sayısı oluşmasını sağlayan kurallardır. Bir işlem türüdür. Dört işlemden sonra gelir.

Matematiksel tanım[değiştir | kaynağı değiştir]

İşlevin matematiksel yani biçimsel ve kuramsal tanımı şu şekildedir:

ve iki küme olsun. , kartezyen çarpımının şu özelliği sağlayan bir altkümesi olsun:

Her için, ilişkisini sağlayan
bir ve bir tane elemanı vardır.

Bu durumda üçlüsüne işlev adı verilir. İki tanım daha: , işlevinin tanım kümesidir, ise varış kümesidir.

işlevine adını verirsek, verilen bir için 'nin ilişkisini sağlayan yegane elemanı olarak gösterilir. Kimi zaman yerine yazıldığı da olur. Demek ki, her için olur. Ayrıca kümesine işlevinin grafiği adı verilir.

İşlevi matematiksel olarak tanımlamak için "kural"dan söz etmediğimize dikkatinizi çekeriz. Ama 'nin bir küme olması gerekliliği matematikçiler açısından can alıcı noktadır.

Eğer ise üçlüsünün bir fonksiyon olması için 'nin boşküme olması gerektiği açıktır, işte bu üçlüsü boş fonksiyondur. Çizgileri düşey doğruları hepsi grafiği yalnız bir noktada kestiği için f (x) fonksiyonu dur

Örnekler[değiştir | kaynağı değiştir]

ve iki küme olsun. 'nın her elemanını bir biçimde 'nin bir ve bir tek elemanıyla ilişkilendirelim. (Koyu renkle yazılmış sözcükler önemlidir; ilerde bunların üstünde duracağız.) Örneğin (gerçel sayılar kümesi), de -3'ten büyük gerçel sayılar kümesi olsun, yani olsun. İlişkilendirmeyi de şöyle yapalım: 'nın her elemanını (yani her gerçel sayıyı), o elemanın karesiyle ilişkilendirelim. Böylece ilişkilendirmeyi bir formülle tanımlamış olduk. Bu örnekteki ilişkilendirmeyi olarak yazarız, her sayı karesiyle ilişkilendirilmiştir, örneğin -3 sayısı 9'la, sayısı 2'yle ilişkilendirilmiştir. İşte 'dan 'ye giden fonksiyon böyle bir şeydir. Fonksiyon simgesiyle ifade edilir. Verilen örnek için yazılır.

yaşamış ya da şu anda yaşayan insanlar kümesi olsun. fonksiyonu her insanı annesine götürsün. Matematiksel olmasa da bu, 'dan 'ya giden bir fonksiyondur, çünkü her insanın bir annesi vardır. Ama her insanı kardeşine götüren bir fonksiyon yoktur çünkü bazı insanların kardeşi olmadığı gibi bazı insanların birden çok kardeşi vardır. Öte yandan, her insanı en büyük kardeşine götüren kural, kardeşi olan insanlar kümesinden kümesine giden bir fonksiyondur.

'dan 'ye giden bir fonksiyonu, kümesinin her elemanını 'nin bir ve bir tek elemanına götüren/elemanıyla ilişkilendiren bir "kural"dır. (Burada biraz yalan var, ama pek önemli değil: Kuralın ne demek olduğunu söylemediğimiz gibi, bir fonksiyonun tanımlanması için herhangi bir kurala da aslında gerek yoktur! İlerde, yazının sonunda, fonksiyonun gerçek matematiksel tanımını verdiğimizde bu pembe yalana ihtiyacımız kalmayacak.)

Özet olarak, verilmiş bir fonksiyonu, 'nın her elemanını bir biçimde 'nin bir ve bir tek elemanına götürür/elemanıyla ilişkilendirir.

Yukardaki örnekte, kural, olarak verilmiştir. Ama bir fonksiyon bir formül ya da bir kuraldan öte bir şeydir. Bir fonksiyon, sadece bir kural değildir; bir fonksiyonu tanımlamak için, kural dışında, bir de ayrıca ve kümeleri de gerekmektedir. Formül ya da kural aynı kalsa bile ve kümeleri değişirse fonksiyon da değişir. Yukardaki örnek üzerinden gidelim:

Yukarda R ve almış ve fonksiyonu kuralıyla tanımlamıştık. Şimdi yerine alırsak ve formülü ve kümesini aynı tutarsak, o zaman elde edilen fonksiyonunu gene ile göstermek yanlış olur, çünkü bu iki fonksiyon değişik fonksiyonlardır. 'den 'ye giden ve kare alma kuralıyla tanımlanan fonksiyonu örneğin ile gösterebiliriz.

Bunun gibi, kümesi değişirse, o zaman fonksiyon da değişir; örneğin ise, kare alma kuralı 'dan 'e giden bir fonksiyon tanımlar ve bu fonksiyon, yukardakilerle karışmasın diye, ya da ile değil, bir başka simgeyle, örneğin ile gösterilir.

Aynı şekilde 'den 'e giden bir fonksiyon, ya da ile değil, örneğin ile gösterilmelidir.

Yukarda koyu renkle yazılı sözcükler şu nedenle önemlidir: Bir fonksiyonu, kümesinin her elemanını 'nin bir elemanına götürür, yani 'nın bazı elemanlarını unutmuş olamaz. Örneğin, karekök alma kuralı, gerçel sayılar kümesi 'den 'ye giden bir fonksiyon tanımlamaz, çünkü negatif sayıların gerçel sayılarda karekökü yoktur. Ya da (doğal sayılar kümesi) ise, kuralı, 'dan 'ye giden bir fonksiyon tanımlamaz çünkü 'dir ve olmasına karşın sayısı 'de değildir. Öte yandan bu kuralı, 'den tamsayılar kümesi 'ye giden bir fonksiyon tanımlar.

İkinci koyu renkli kısmın önemi ise şu şekildedir: Bir fonksiyonu, 'nın her elemanını 'nin bir ve bir tek elemanına götürür, yani 'nın aynı elemanı 'nin iki ayrı elemanına gidemez. (Yukarda verilen kardeş örneğini anımsayın.) Örneğin ise, 'nin bir elemanını denkleminin çözümlerine götüremez, çünkü eğer değilse, bu denklemin R'de iki değişik çözümü vardır, nitekim denkleminin çözümleri ve 'tir. Burada, 'in 'e mi yoksa 'e mi gideceği belirtilmemiştir ve bu, bir fonksiyon yaratmada sorun teşkil eder. Bir fonksiyonunda, 'nın her elemanını 'nin bir ve bir tek elemanına gitmelidir, iki ya da daha fazla elemana gidemez. (Birkaç yüzyıl önce bu tür fonksiyonlar kabul ediliyordu ama bugün bunlara fonksiyon denmiyor.)

Kalkış ve varış kümeleri.[değiştir | kaynağı değiştir]

Bir fonksiyonunda, 'ya tanım kümesi ya da kalkış kümesi denir. 'ye de değer kümesi ya da varış kümesi denir.

Görüntü[değiştir | kaynağı değiştir]

Eğer ise 'e 'in altında görüntüsü adı verilir. 'nin

altkümesi olarak gösterilir ve bu kümeye 'nin görüntü kümesi adı verilir. (Kimi yerine 'ye görüntü kümesi demeyi yeğliyor ama her zaman görüntü kümesi değer kümesine eşit olmak zorunda değildir.)

Örneğin kuralıyla tanımlanan (-3,5) R fonksiyonunun görüntü kümesi aralıkıdır.

İşlev eşitliği[değiştir | kaynağı değiştir]

ve fonksiyonlarının birbirine eşit olması için, 1) tanım kümelerinin eşit olması, 2) değer kümelerinin eşit olması ve 3) tanım kümesindeki her için olması gerekmektedir. Bu üç koşuldan biri eksikse fonksiyonlar eşit olmaz. (Genellikle liselerde sadece üçüncü koşul üzerinde durulur.) Gene de eşitlikte en önemli koşul (3) koşuludur. Ardından (1) koşulu gelir. (2) koşulunun gözden kaçtığı olur.


Durağan (Sabit) işlevler[değiştir | kaynağı değiştir]

ve iki küme olsun ve olsun. 'nın her elemanını 'nin bu elemanına götüren fonksiyona sabit fonksiyon adı verilir. değerini alan sabit fonksiyonu olarak gösterirsek, o zaman fonksiyonu, her için kuralıyla tanımlanır. Not: ve kümelerinin önemini ortaya çıkarmak istiyorsak, yerine yazmak gerekebilir. Bu fonksiyona "sabit fonksiyonu" adı verilir.

Bileşke mümkün olduğunda 'dir. Ama 'dir.

Eğer ya da 'nin tek bir elemanı varsa, o zaman 'dan 'ye giden her fonksiyon sabit olmak zorundadır.

Eğlencelik[değiştir | kaynağı değiştir]

Eğer ve ise, 'dan 'ye giden bir fonksiyon yoktur.

Eğer ise, hangi küme olursa olsun, 'dan 'ye giden bir ve bir tek fonksiyon vardır: boşfonksiyon. Pek de önemli olmayan bu olgu, birazdan, fonksiyonun matematiksel tanımı verdiğimizde bariz olacak.

Özdeşlik işlevi[değiştir | kaynağı değiştir]

Eğer bir kümeyse, her için Id kuralıyla tanımlanan Id fonksiyonuna 'nın özdeşlik fonksiyonu adı verilir. Özdeşlik fonksiyonu bileşkenin sağdan ve soldan etkisiz elemanıdır.

Bir işlevin kısıtlanışı[değiştir | kaynağı değiştir]

Eğer bir fonksiyonsa ve , 'nın bir altkümesiyse, o zaman fonksiyonunu altkümesine kısıtlayabiliriz, yani 'nin sadece kümesinin elemanlarında alacağı değerlerle ilgilenebiliriz. Bu yeni fonksiyon

olarak yazılır ve bu fonksiyona 'nin 'e kısıtlanmışı adı verilir. Elbette eğer ise eşitliği geçerlidir.

Varış kümesini değiştirmek[değiştir | kaynağı değiştir]

Bir fonksiyonun varış kümesini de değiştirebiliriz: bir fonksiyon olsun. , 'nin görüntü kümesi 'yı altküme olarak içeren herhangi bir küme olsun. O zaman tanım kümesini ve kuralını değiştirmeden yeni bir fonksiyonu elde edebiliriz. Bu fonksiyon - daha önceki paragraftaki gibi - özel bir simgeyle gösterilmez.

İşlevlerin yapıştırılması ya da birleşimi[değiştir | kaynağı değiştir]

ve iki fonksiyon olsun. üzerinde olan, üzerinde olan ve 'den 'ye giden bir fonksiyonu tanımlamak istiyoruz. Eğer ise hiç kuşku yok ki olmalı. Eğer ise gene hiç kuşku yok ki olmalı. Ama olduğunda, için ya da arasında bir seçim yapmalıyız, özellikle eğer ise... Bu durumda hangi seçimi yaparsak yapalım istediğimiz iki koşuldan birini çiğnemek zorunda kalacağız. Ama diyelim ki, her için , yani ve fonksiyonları kesişiminde aldıkları değer aynı, bir başka deyişle . O zaman fonksiyonunu herhangi bir seçime gerek kalmadan şöyle tanimlayabiliriz:

eğer ise
eğer ise.

Bu işleve ve fonksiyonlarının birleşimi ya da yapıştırılması adı verilir ve yukarda gösterildiği gibi bu fonksiyon olarak yazılır.

Örneğin fonksiyonu olarak tanımlanmışsa ve fonksiyonu olarak tanımlanmışsa, o zaman fonksiyonu aynen mutlak değer fonksiyonudur: .

Elbette ve .

Gene doğal olarak diye bir işlev varsa diye bir işlev de vardır ve bu iki işlev birbirine eşittir.

Yukardaki yapıştırmayı yapabilmemiz için ve fonksiyonlarının varış kümeleri aynı olmak zorunda değildi. Nitekim, eğer ve iki fonksiyon ise ve bu fonksiyonların kümesinde aldıkları değer eşitse, o zaman üzerinde olan, üzerinde olan bir fonksiyonunu gene tanımlayabiliriz.

İkiden çok, hatta sonsuz tane fonksiyonu da yapıştırabiliriz eğer gerekli koşullar sağlanıyorsa: bir fonksiyon ailesi olsun. Ayrıca her göstergeçleri (endisleri) için ve fonksiyonlarının kesişiminde aldıkları değerler eşit olsun. O zaman her ve her için eşitliğini sağlayan bir fonksiyonu,

"eğer ise "

kuralıyla tanımlanabilir. Bu tür yapıştırmalar topolojide ve analizde sık sık kullanılır.

Bir İşlevin Altkümeler Kümesinde Neden Olduğu İşlev. bir fonksiyon olsun. 'nın her altkümesi için, 'nin altkümesi şöyle tanımlanır:

.

Bu yazılımı ender de olsa soruna yol açabilir, çünkü 'nın altkümesi bal gibi de aynı zamanda 'nın bir elemanı olabilir, o zaman ifadesinin fonksiyonunun 'te aldığı değer mi olduğu, yoksa yukardaki gibi 'nin altkümesi olarak mı tanımlandığı anlaşılamaz. Örneğin, olsun. olsun. fonksiyonu, , olarak tanımlansın. Ve son olarak olsun. , hem 'nın bir elemanı hem de bir altkümesidir. eleman olarak görüldüğünde olur ama altküme olarak görüldüğünde olur. Belki bu yüzden

tanımı yerine,

tanımını yapmak daha yerinde olur.

Eğer , 'in altkümeleri kümesiyse, yukardaki kuralı, 'ten 'ye giden bir fonksiyon tanımlar. Bu fonksiyonu altküme olma ilişkisine saygı duyar.

İlgili maddeler[değiştir | kaynağı değiştir]

X kümesindeki her eleman (bir giriş) , Y kümesindeki bir elemanla mutlaka eşlenmelidir. (bir çıkış)
Bu gösterim bir işlev (fonksiyon) değildir. (Bir girişe iki çıkış vardır.)
Örnek bir işlev (fonksiyon) grafiği

Gönderme Örnekleri

  • İki değişkenli göndermeler de vardır.
  • Verilen sıraya karşılık gelen çift sayıyı söyleyen bağıntı bir göndermedir: f(n)=2n.
  • Bir küme üzerinde tanımlı bir ikili işlem, göndermedir: f(x,y)=x+y.
  • Diziler birer göndermedir.
için yani

Tanım[değiştir | kaynağı değiştir]

A'dan B'ye tanımlı bir gönderme (f), (A,B,F) şeklinde gösterilebilen bir üçlüdür. Burada F, aşağıdaki özelliklere sahip sıralı ikili kümesidir.

Başka bir deyişle, bir bağıntının gönderme olabilmesi için, A kümesindeki herhangi bir öğenin B kümesinden en fazla bir öğeyle eşleşmesi gerekmektedir.

Gönderme, daha soyut matematiksel anlamda bir kümedir ve tanımı şu şekildedir: göndermesi için,

buradaki simgesi y nin biricik olduğunu ifade eder.

Yukarıdaki resmi tanımlama, her zaman kullanışlı olmadığından genelde göndermeler farklı tanımlanır.

En yaygın tanımlama biçimi, örneklerde görüldüğü gibi sağ tarafı girdilere (parametrelere) dayalı formül, sol tarafı göndermenin ve bağımsız girdilerin belirtildiği bir eşitliktir.

Göndermeler aşağıda örnekte görüldüğü gibi parçalı şekilde de tanımlanabilir.

Tümevarımla yakın ilişkisi olan ilginç bir tanımlama biçimi de yinelgedir. Örneğin Fibonacci Serisi'nin üretici göndermesi şu şekilde tanımlanabilir.

Boylece 'den 'ye giden bir fonksiyonu tanımlanır.

Göndermelerin Kümesel Özellikleri[değiştir | kaynağı değiştir]

şeklinde tanımlı bir gönderme,

  • Birebir ise, A kümesinde tanımlı olduğu her değeri B kümesinden ayrı bir öğeye eşler,

Matematiksel olarak; her x1, x2 €A için f(x1)=f(x2) => x1=x2

  • İçine ise B kümesinde, eşlenmemiş en az bir değer vardır.
  • Örten ise A kümesindeki bütün öğeler için tanımlıdır.

Matematiksel olarak ; her y € B için en az bir x€A vardır öyleki ; f(x)=y'dir.

Bilgisayar Bilimi ve Göndermeler[değiştir | kaynağı değiştir]

Bilgisayarda göndermelere Türkçede genellikle işlev ya da fonksiyon adı verilir.