Birim öge
Görünüm
(Birim öğe sayfasından yönlendirildi)
Matematikte birim öge, birim eleman, etkisiz eleman veya nötr eleman, bir kümenin özel bir ögesidir. Bir kümede herhangi bir ögeyle işleme girdiğinde yine aynı ögeyi verir. Genel olarak e ile gösterilir.
- Her a A için öyle bir e A vardır ki ea=ae=a olur.
A kümesinde tanımlı bir işlemi için, bu kümedeki her eleman için olacak şekilde bir "e" elemanı varsa "e"ye işleminin etkisiz elemanı (ya da birim elemanı) denir.
Örneğin, toplama işleminin etkisiz elemanı 0 iken çarpma işlemininki 1 dir. Bu ögenin kümede biricik olduğu rahatlıkla gösterilebilir:
- Diyelim bu koşulu sağlayan iki birim öge var: e ve e' . Eğer bu ikisini işleme sokarsak, e=ee'=e'e=e' olduğu görülür.
Örnekler
[değiştir | kaynağı değiştir]küme | işlem | birim |
---|---|---|
reel sayılar | + (toplama) | 0 |
real sayılar | · (çarpma) | 1 |
negatif olmayan sayılar | ab (üslü) | 1 (yalnızca sağ birim) |
tam sayılar (genişletilmiş rasyonellere | ||
doğal sayılar | ortak kat | 1 |
doğal sayılar | ortak bölen | 0 |
m'ye-n'lik matrisler | + (matris toplamı) | sıfır matris |
n'ye n'lik kare matris | matris çarpımı | In (birim matrisii) |
m'ye n'lik matrisler | (Hadamard çarpımı) | Jm, n (Birler matrisi) |
bir M kümesindeki tüm fonksiyonlar | ∘ (bileşke fonksiyon) | birim fonksiyon |
bir G grubundaki tüm dağılımlar | ∗ (konvolüsyon) | δ (Dirac delta fonksiyonu) |
genişletilmiş reel sayılar | minimum | +∞ |
genişletilmiş reel sayılar | maksimum | −∞ |
bir M kümesinin alt kümeleri | ∩ (kesişimi) | M |
kümeler | ∪ (birleşimi) | ∅ (boş küme) |
koşullar, sıralamalar | birleştirme | boş koşul, boş liste |
bir boolean cebri | ∧ (mantıksal kesişim) | ⊤ (doğru) |
bir boolean cebri | ∨ (mantıksal birleşim) | ⊥ (yanlış) |
bir boolean cebri | ⊕ (veya değil) | ⊥ (yanlış) |
düğümler | düğüm toplamı | düğümsüz |
kapalı manifold | # (düğüm toplamı) | S2 |
yalnızca {e, f} iki ögesi | ∗ şöyle tanımlanır; e ∗ e = f ∗ e = e ve f ∗ f = e ∗ f = f |
hem e hem de f sol birimlerdir, fakat sağ birim yoktur iki taraflı birim yoktur |