Ters trigonometrik fonksiyonlar

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

arcsin, arccos, arctan sırasıyla sin−1, cos−1, tan−1 olarak gösterilir. Fakat bu dönüşüm, sin2(x) gibi yaygın kullanılan ifadelerde karmaşaya neden olabilir. Buradaki sayısal kuvvet, ters çarpan ile ters fonksiyon arasında bir karmaşa meydana getirir.

Bilgisayar programlama dillerinde, arcsin, arccos, arctan fonksiyonları genellikle asin, acos, atan olarak adlandırılır. Çoğu programlama dili de atan2 fonksiyonunu iki argümanlı olarak kullanır ve y / x'in arctanjantını (−π, π] aralığında y ve x olarak ifade eder.

Asıl değerler[değiştir | kaynağı değiştir]

Altı trigonometrik fonksiyondan hiçbiri birebir fonksiyon değildir, terslerinin alınmasında kısıtlamalar vardır. Bu yüzden ters fonksiyonların değerleri, asıl fonksiyonların tanım kümesinin alt kümesidir

Örneğin çok değerli fonksiyonlarda, yalnızca karekök fonksiyonu y = \sqrt{x}, y2 = x olarak tanımlanabilir. y = arcsin(x) fonksiyonu sin(y) = x olarak ifade edilebilir. sin(y) = x'yi ifade eden birçok y sayısı vardır. Örneğin sin(0) = 0, fakat sin(π) = 0, sin(2π) = 0, vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, fakat arcsin(0) = π, arcsin(0) = 2π, vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır. Bu kısıtlama ile, tanım kümesindeki her bir x için arcsin(x) ifadesi yalnızca tek bir değere karşılık gelir, bu da asıl değer olarak adlandırılır. Bu özellikler tüm ters trigonometrik fonksiyonlarda uygulanır.

Aşağıdaki tabloda ters trigonometrik fonksiyonların asılları listelenmiştir.

Fonksiyon Genel gösterim İfade x değer aralığı Asıl değer aralığı
(radyan)
Asıl değer aralığı
(derece)
arcsinüs y = arcsin x x = sin y −1 ≤ x ≤ 1 π/2 ≤ yπ/2 −90° ≤ y ≤ 90°
arckosinüs y = arccos x x = cos y −1 ≤ x ≤ 1 0 ≤ yπ 0° ≤ y ≤ 180°
arctanjant y = arctan x x = tan y tüm reel sayılar π/2 < y < π/2 −90° < y < 90°
arckotanjant y = arccot x x = cot y tüm reel sayılar 0 < y < π 0° < y < 180°
arcsekant y = arcsec x x = sec y x ≤ −1 or 1 ≤ x 0 ≤ y < π/2 or π/2 < yπ 0° ≤ y < 90° or 90° < y ≤ 180°
arckosekant y = arccsc x x = csc y x ≤ −1 or 1 ≤ x π/2 ≤ y < 0 or 0 < yπ/2 -90° ≤ y < 0° or 0° < y ≤ 90°

Eğer x bir karmaşık sayı olursa, y değer aralığı yalnızca gerçel kısımda olur.

Ters trigonometrik fonksiyonların ilişkisi[değiştir | kaynağı değiştir]

arcsin(x) (kırmızı), arccos(x) (mavi) fonksiyonlarının asıl değerleri nin kartezyen koordinatındaki grafiği.
arctan(x) ve arccot(x) fonksiyonlarının kartezyen düzlemindeki asıl değerleri.
arcsec(x) ve arccsc(x) fonksiyonlarının kartezyen düzlemindeki grafikleri.

Tümler açılar:

\arccos x = \frac{\pi}{2} - \arcsin x
\arccot x = \frac{\pi}{2} - \arctan x
\arccsc x = \frac{\pi}{2} - \arcsec x

Negatif argümanlar:

\arcsin (-x) = - \arcsin x \!
\arccos (-x) = \pi - \arccos x \!
\arctan (-x) = - \arctan x \!
\arccot (-x) = \pi - \arccot x \!
\arcsec (-x) = \pi - \arcsec x \!
\arccsc (-x) = - \arccsc x \!

Karşıt argümanlar:

\arccos (1/x) \,= \arcsec x \,
\arcsin (1/x) \,= \arccsc x \,
\arctan (1/x) = \tfrac{1}{2}\pi - \arctan x =\arccot x,\text{ eğer }x > 0 \,
\arctan (1/x) = -\tfrac{1}{2}\pi - \arctan x = -\pi + \arccot x,\text{ eğer }x < 0 \,
\arccot (1/x) = \tfrac{1}{2}\pi - \arccot x =\arctan x,\text{ eğer }x > 0 \,
\arccot (1/x) = \tfrac{3}{2}\pi - \arccot x = \pi + \arctan x,\text{ eğer }x < 0 \,
\arcsec (1/x) = \arccos x \,
\arccsc (1/x) = \arcsin x \,

Eğer yalnızca bir sinüs tablosu varsa:

\arccos x = \arcsin \sqrt{1-x^2},\text{ eğer }0 \leq x \leq 1
\arctan x = \arcsin \frac{x}{\sqrt{x^2+1}}

Burada bir karmaşık sayının karekökü kullanılırsa, bunun pozitif gerçel kısmı (veya kare negatif gerçel ise sanal kısım) seçilir.

Tanjant yarım açı formülünden, \tan \frac{\theta}{2} = \frac{\sin \theta}{1+\cos \theta} , aşağıdakiler elde edilebilir;

\arcsin x = 2 \arctan \frac{x}{1+\sqrt{1-x^2}}
\arccos x = 2 \arctan \frac{\sqrt{1-x^2}}{1+x},\text{ eğer }-1 < x \leq +1
\arctan x = 2 \arctan \frac{x}{1+\sqrt{1+x^2}}

Trigonometrik fonksiyonlar ile ters trigonometrik fonksiyonlar arasındaki ilişkiler[değiştir | kaynağı değiştir]

\sin (\arccos x) = \cos(\arcsin x) = \sqrt{1-x^2}
\sin (\arctan x) = \frac{x}{\sqrt{1+x^2}}
\cos (\arctan x) = \frac{1}{\sqrt{1+x^2}}
\tan (\arcsin x) = \frac{x}{\sqrt{1-x^2}}
\tan (\arccos x) = \frac{\sqrt{1-x^2}}{x}

Ters trigonometrik fonksiyonların türevleri[değiştir | kaynağı değiştir]

x in reel ve karmaşık değerlerinin türevleri şöyledir:


\begin{align}
\frac{d}{dx} \arcsin x & {}= \frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx} \arccos x & {}= \frac{-1}{\sqrt{1-x^2}}\\
\frac{d}{dx} \arctan x & {}= \frac{1}{1+x^2}\\
\frac{d}{dx} \arccot x & {}= \frac{-1}{1+x^2}\\
\frac{d}{dx} \arcsec x & {}= \frac{1}{x\,\sqrt{x^2-1}}\\
\frac{d}{dx} \arccsc x & {}= \frac{-1}{x\,\sqrt{x^2-1}}
\end{align}

x in yalnızca reel değerleri şöyledir:


\begin{align}
\frac{d}{dx} \arcsec x & {}= \frac{1}{|x|\,\sqrt{x^2-1}}; \qquad |x| > 1\\
\frac{d}{dx} \arccsc x & {}= \frac{-1}{|x|\,\sqrt{x^2-1}}; \qquad |x| > 1
\end{align}

Örnek bir türev: eğer \theta = \arcsin x \! ise;

\frac{d \arcsin x}{dx} = \frac{d \theta}{d \sin \theta} = \frac{d \theta}{\cos \theta d \theta} = \frac{1} {\cos \theta} = \frac{1} {\sqrt{1-\sin^2 \theta}} = \frac{1}{\sqrt{1-x^2}} olur.

Belirli integral olarak ifadesi[değiştir | kaynağı değiştir]

Bir noktadaki türevin integrali ve sabit değeri, ters trigonometrik fonksiyonların belirli integrallarinin ifadesini verir:


\begin{align}
\arcsin x &{}= \int_0^x \frac {1} {\sqrt{1 - z^2}}\,dz,\qquad |x| \leq 1\\
\arccos x &{}= \int_x^1 \frac {1} {\sqrt{1 - z^2}}\,dz,\qquad |x| \leq 1\\
\arctan x &{}= \int_0^x \frac 1 {z^2 + 1}\,dz,\\
\arccot x &{}= \int_x^\infty \frac {1} {z^2 + 1}\,dz,\\
\arcsec x &{}= \int_1^x \frac 1 {z \sqrt{z^2 - 1}}\,dz, \qquad x \geq 1\\
\arcsec x &{}= \pi + \int_x^{-1} \frac 1 {z \sqrt{z^2 - 1}}\,dz, \qquad x \leq -1\\
\arccsc x &{}= \int_x^\infty \frac {1} {z \sqrt{z^2 - 1}}\,dz, \qquad x \geq 1\\
\arccsc x &{}= \int_{-\infty}^x \frac {1} {z \sqrt{z^2 - 1}}\,dz, \qquad x \leq -1
\end{align}

x 1'e eşit olduğunda, integraller tanım kümesini belirsiz integral ile kısıtlar, fakat yine de iyi tanımlıdırlar.

Sonsuz seriler[değiştir | kaynağı değiştir]

Sinüs ve kosinüs gibi fonksiyonların ters trigonometrik fonksiyonları sonsuz seriler kullanılarak hesaplanabilir, şöyle ki:

 \arcsin z = z + \left( \frac {1} {2} \right) \frac {z^3} {3} 
+ \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \left( \frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^7} {7} + \cdots\ 
= \sum_{n=0}^\infty \frac {\binom{2n} n z^{2n+1}} {4^n (2n+1)}; \qquad | z | \le 1


 \arccos z = \frac {\pi} {2} - \arcsin z
= \frac {\pi} {2} - \left( z + \left( \frac {1} {2} \right) \frac {z^3} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \cdots\ \right) 
= \frac {\pi} {2} - \sum_{n=0}^\infty \frac {\binom{2n} n z^{2n+1}} {4^n (2n+1)}; \qquad | z | \le 1


 \arctan z = z - \frac {z^3} {3} +\frac {z^5} {5} -\frac {z^7} {7} +\cdots\ 
= \sum_{n=0}^\infty \frac {(-1)^n z^{2n+1}} {2n+1}; \qquad | z | \le 1 \qquad z \neq i,-i


 \arccot z = \frac {\pi} {2} - \arctan z \ = \frac {\pi} {2} - \left( z - \frac {z^3} {3} +\frac {z^5} {5} -\frac {z^7} {7} +\cdots\ \right)  
= \frac {\pi} {2} - \sum_{n=0}^\infty \frac {(-1)^n z^{2n+1}} {2n+1}; \qquad | z | \le 1 \qquad z \neq i,-i


 \arcsec z = \arccos {(1/z)} 
= \frac {\pi} {2} - \left( z^{-1} + \left( \frac {1} {2} \right) \frac {z^{-3}} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^{-5}} {5} + \cdots\ \right)  
= \frac {\pi} {2} - \sum_{n=0}^\infty \frac {\binom{2n} n z^{-(2n+1)}} {4^n (2n+1)}; \qquad | z | \ge 1


 \arccsc z = \arcsin {(1/z)} 
= z^{-1} + \left( \frac {1} {2} \right) \frac {z^{-3}} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4 } \right) \frac {z^{-5}} {5} +\cdots\ 
= \sum_{n=0}^\infty \frac {\binom{2n} n z^{-(2n+1)}} {4^n (2n+1)}; \qquad | z | \ge 1


Leonhard Euler, arctanjant için daha kullanışlı bir seri buldu:

\arctan z = \frac{z}{1+z^2} \sum_{n=0}^\infty \prod_{k=1}^n \frac{2k z^2}{(2k+1)(1+z^2)}.

(n = 0 için toplamdaki terimin boş çarpım (ki bu 1'dir) olduğuna dikkat edin.)


Alternatif olarak bu şöyle de ifade edilebilir;

\arctan z = \sum_{n=0}^\infty \frac{2^{\,2n}\,(n!)^2}{\left(2n+1\right)!} \; \frac{z^{\,2n+1}}{\left(1+z^2\right)^{n+1}}

Logaritmik biçimler[değiştir | kaynağı değiştir]

Bu logaritmik biçimler karmaşık düzlemde bulunur.


\begin{align}
\arcsin x &{}= -i\,\ln\left(i\,x+\sqrt{1-x^2}\right) &{}= \arccsc \frac{1}{x}\\[10pt]
\arccos x &{}= -i\,\ln\left(x+i\,\sqrt{1-x^2}\right) = \frac{\pi}{2}\,+i\ln\left(i\,x+\sqrt{1-x^2}\right) = \frac{\pi}{2}-\arcsin x &{}= \arcsec \frac{1}{x}\\[10pt]
\arctan x &{}= \tfrac{1}{2}i\left(\ln\left(1-i\,x\right)-\ln\left(1+i\,x\right)\right) &{}= \arccot \frac{1}{x}\\[10pt]
\arccot x &{}= \tfrac{1}{2}i\left(\ln\left(1-\frac{i}{x}\right)-\ln\left(1+\frac{i}{x}\right)\right) &{}= \arctan \frac{1}{x}\\[10pt]
\arcsec x &{}= -i\,\ln\left(i\,\sqrt{1-\frac{1}{x^2}}+\frac{1}{x}\right) = i\,\ln\left(\sqrt{1-\frac{1}{x^2}}+\frac{i}{x}\right)+\frac{\pi}{2} = \frac{\pi}{2}-\arccsc x &{}= \arccos \frac{1}{x}\\[10pt]
\arccsc x &{}= -i\,\ln\left(\sqrt{1-\frac{1}{x^2}}+\frac{i}{x}\right) &{}= \arcsin \frac{1}{x}
\end{align}

Örnek ispat[değiştir | kaynağı değiştir]

\theta = \arcsin x
\sin(\theta) = \sin(\arcsin x)
\sin(\theta) = x

Sinüsün üstel biçimi şöyledir;

\frac{e^{i\phi} - e^{-i\phi}}{2i} = \sin(\phi)

Böylece ifade şöyle olur:

\frac{e^{i\theta} - e^{-i\theta}}{2i} = x

Burada aşağıdaki gibi bir değişken değiştirme uygulanırsa;

k=e^{i\,\theta}. \,

Eşitlik şöyle olur;

\frac{k-\frac{1}{k}}{2i} = x
{k-\frac{1}{k}} = 2ix
{k -2ix -\frac{1}{k}} = 0
k^2-2\,i\,k\,x-1\,=\,0
k = ix \pm \sqrt{1-x^2} \,
e^{i\theta} = ix \pm \sqrt{1-x^2} \,
i \theta = \ln \left(ix \pm \sqrt{1-x^2}\right) \,
\theta = -i \ln \left(ix \pm \sqrt{1-x^2}\right) \,

(yukarıdaki eşitliğin pozitif kısmı alınırsa)

\theta = \arcsin x = -i \ln \left(ix + \sqrt{1-x^2}\right) \,
Karmaşık düzlemdeki ters trigonometrik fonksiyonlar
Complex arcsin.jpg
Complex arccos.jpg
Complex arctan.jpg
Complex ArcCot.jpg
Complex ArcSec.jpg
Complex ArcCsc.jpg

\arcsin(z)

\arccos(z)

\arctan(z)

\arccot(z)

\arcsec(z)

\arccsc(z)

Ayrıca bakınız[değiştir | kaynağı değiştir]