Büyük sayılar yasası

Vikipedi, özgür ansiklopedi
Atla: kullan, ara
Largenumbers.svg

Büyük sayılar yasası bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Büyük sayılar yasası bir zarın peş peşe atılması ile örneklenebilir. Öyle ki, multinom dağılımı sonucunda 1, 2, 3, 4, 5 ve 6 sayılarının gelme olasılığı eşittir. Bu sonuçların nüfus ortalaması (ya da "beklenen değer"i),

(1 + 2 + 3 + 4 + 5 + 6) / 6 = 3,5 olur.

Sağdaki grafik bir zarın atılması deneyinin sonuçlarını göstermektedir. Bu deneyde görürüz ki, ilk başta zar atışlarının ortalaması çılgınca dalgalanmaktadır. Büyük sayılar yasası tarafından öngörüldüğü üzere, gözlem sayısı arttıkça, ortalama, beklenen değerin yani 3,5'in etrafında dengelenmektedir.

Bir başka örnek madeni para atılması olabilir. Bir madeni paranın peş peşe atılması durumunda, yazıların (ya da turaların) sıklığı, gözlem sayısı arttıkça, %50'e gittikçe yaklaşacaktır. Fakat yazı ve tura sayıları arasındaki mutlak fark atış sayısı arttıkça açılacaktır.[1] Örneğin, 1000 atıştan sonra 520 ve 10000 atıştan sonra 5096 yazı görebiliriz. Ortalama ,52'den ,5096'ya gittiği, gerçek %50'ye yaklaştığı halde, ortalamadan toplam fark 20'den 96'ya yükselmiştir.

Büyük sayılar yasası önemlidir, çünkü rastgele olaylardan kararlı uzun-vadeli sonuçlar alınacağını "garanti eder". Örneğin, bir gazino tek bir Amerikan Rulet dönüşünden para kaybedebilir, ama 1000lerce dönüşe oynanan paranın tamamının %5,3'üne yakınını neredeyse kesin olarak kazanacaktır. Bir oyuncunun herhangi bir kazancı, sonuçta oyunun başlıca parametreleri tarafından soğurulacaktır. Büyük sayılar yasasının büyük sayıda gözlem yapıldığı zaman etkili olacağı unutulmamalıdır. Küçük miktardaki gözlem için sonucun beklenen değere yaklaşacağını veya bir sapmanın hemen bir başkasıyla "dengeleneceğini" beklemek için bir neden yoktur. Kumarbaz aldanmasına bakabilirsiniz.

Geçmiş[değiştir | kaynağı değiştir]

Büyük sayılar yasası ilk olarak Jacob Bernoulli tarafından tanımlanmıştır.[2] 1713'te Ars Conjectandi (Varsayımın Sanatı) adlı eserinde yayınlanan yeterli derecede titiz bir kanıtı geliştirebilmesi 20 yılına mal olmuştur. Bunu kendisinin "Altın Teoremi" olarak adlandırmış, fakat yaygın olarak "Bernoulli'nin Kuramı" olarak bilinmektedir(Bernoulli kuramı fizik kuramıyla karıştırılmaması gerekir). 1835'te S.D. Poisson, bu yasayı "La loi des grands nombres" (Büyük sayılar yasası) olarak adlandırmıştır [3]. İki isimde de anılagelen bu yasa için "Büyük sayılar yasası" terimi daha fazla kullanılmaktadır.

Bernoulli ve Poisson kendi çalışmalarını yayımladıktan sonra, Chebyshev, Markov, Borel, Cantelli ve Kolmogorov'un da aralarında yer aldığı diğer matematikçiler de yasanın gelişmesine katkıda bulunmuşlardır. Bu çalışmalar yasanın iki belirgin biçiminin ortaya konulmasında etkili olmuştur. Bu biçimlerden biri "zayıf" yasa, diğeri de "güçlü" yasa olarak adlandırılır. Bu biçimler farklı yasaları tanımlamamaktadır, sadece ölçülmüş olasılığın, gerçek olasılığa yakınsamasını tanımlamanın farklı yollarıdır ve büyük olan küçüğü içerir.

Biçimler[değiştir | kaynağı değiştir]

Yasanın her iki ifadesi de örneklem ortalamasının

\overline{X}_n=\frac1n(X_1+\cdots+X_n)

beklenen değere yakınsadığını

\overline{X}_n \, \to \, \mu \qquad\textrm{for}\qquad n \to \infty

ifade eder. Burada X1, X2, ... değerleri E(X1)=E(X2) = ... = µ < ∞ beklenen değerlerine sahip, bağımsız ve eş aralıklı (i.i.d.) sonsuz rassal değişken sırasını simgeler.

Bir sonlu varyans Var(X1) = Var(X2) = ... = σ2 < ∞ varsayımına ihtiyaç yoktur. Büyük veya sonsuz varyans yakınsamayı daha yavaş kılacaktır, fakat büyük sayılar yasası hala geçerlidir. Kanıtları daha kolay ve kısa tutmak için bu varsayım genellikle yapılır.

Güçlü ve zayıf ifadeler arasındaki fark, hangi tür yakınsamadan bahsettiğimizdir.

Zayıf yasa[değiştir | kaynağı değiştir]

Büyük sayıların zayıf yasası belirtmektedir ki, örneklem ortalamasının olasılıkta yakınsaması beklenen değere doğru gerçekleşir

\overline{X}_n \, \xrightarrow{P} \, \mu \qquad\textrm{for}\qquad n \to \infty.

Bu, herhangi bir pozitif ε sayısı için

\lim_{n\rightarrow\infty}\operatorname{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1.

(Kanıt)

Olasılıkta yakınsamayı yorumlarsak, zayıf yasa der ki, birçok gözlemin ortalaması giderek ne kadar küçük olduğuna bakılmaksızın, verilen herhangi bir sıfırdan farklı sınır dahilinde olmak üzere, ortalamaya yakın olacaktır.

Bu ifadeye zayıf yasa denir, çünkü olasılıkta yakınsama, rassal değişkenlerin zayıf yakınsamasıdır.

Zayıf büyük sayılar yasasının bir sonucu asimptotik eşdağılım özelliğidir.

Güçlü yasa[değiştir | kaynağı değiştir]

Büyük sayıların güçlü yasası der ki, örneklem ortalamasının olasılıkta yakınsaması neredeyse kesin olarak beklenen değere doğru gerçekleşir

\overline{X}_n \, \xrightarrow{\mathrm{a.s.}} \, \mu \qquad\textrm{for}\qquad n \to \infty .

Bu demektir ki,

\operatorname{P}\left(\lim_{n\rightarrow\infty}\overline{X}_n=\mu\right)=1,

Kanıt, zayıf yasadan daha karmaşıktır. Bu yasa bir rassal değişkenin beklenen değerini "art arda örneklemin uzun-vadeli ortalaması" olan sezgisel yorumunu doğrular.

Bu ifade güçlü yasa olarak adlandırılmıştır, çünkü yakınsama, rassal değişkenlerin güçlü yakınsamasıdır. Güçlü yasa, zayıfı kapsar.

Büyük sayıların güçlü yasası, ergodik teorem'in özel durumu olarak görülebilir.

Etkinlikler ve gösteriler[değiştir | kaynağı değiştir]

Kuramı ve büyük sayılar yasasının uygulamalarını interaktif araçlarla görselleştiren çeşitli uygulamalar mevcuttur. SOCR adlı hands-on learning activity kaynak ile beraber Java applet (select the Coin Toss LLN Experiment) sitesinde yer alan örnekler büyük sayılar yasasını güzel bir şekilde ifade eder.

Kaynaklar[değiştir | kaynağı değiştir]

  1. ^ Tijms, Henk (2007). Understanding Probability: Chance Rules in Everyday Life. Cambridge University Press. ss. 17. ISBN 978-0-521-70172-3. http://books.google.com/books?id=Ua-_5Ga4QF8C&printsec=frontcover#PRA2-PA17,M1. 
  2. ^ Jakob Bernoulli, Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis, 1713, Chapter 4,(Translated into English by Oscar Sheynin)
  3. ^ Hacking, Ian. (1983) "19th-century Cracks in the Concept of Determinism"
  • Probability and Random Processes, 2nd Edition. Clarendon Press, Oxford. 1992. ISBN 0-19-853665-8. 
  • Probability: Theory and Examples, 2nd Edition. Duxbury Press. 1995. 
  • Videregående Sandsynlighedsregning (Advanced Probability Theory) 3rd Edition. HCØ-tryk, Copenhagen. 1992. ISBN 87-91180-71-6. 

Ayrıca bakınız[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]

  • [1] MathWorld: Zayıf büyük sayilar yasası.
  • [2] MathWorld: Güçlü büyük sayilar yasası.
  • [3] Şans tabloları yasası - rastgele şansa bağlanabilenden daha büyük olduğu iddia edilen başarılarin sınanmasi icin kullanilanilir.