İntegral veya tümlev, bir fonksiyon eğrisinin altında kalan alan. Fonksiyonun, türevinin tersi olan bir fonksiyon elde edilmesini sağlar.
Tanım
İntegral, verilen bir f(x) fonksiyonunu türev kabul eden F(x) fonksiyonunun bulunması olarak yapılabilir. F(x) fonksiyonuna f(x) fonksiyonunun integrali veya ilkeli denir. İntegral, Latince toplam kelimesinin ("ſumma", "summa") baş harfi s'nin biraz evrim geçirmiş ∫ işareti ile gösterilir. Bu işaret Gottfried Wilhelm Leibniz tarafından tanımlanmıştır.
c bir sabiti gösterir ve integralin bir sabit farkı ile bulunabileceğine işaret eder.
Bir eksen takımında gösterilen f(x) göndermesinin altında kalan a < x < b aralığındaki alan, integral yardımıyla hesaplanabilir. Bu amaçla alan küçük dikdörtgenlere bölünerek, bunların alanı hesap edilip toplanır. Dikdörtgen sayısı arttıkça toplam eğri altındaki alan, alanın değerine yaklaşır ve integralin tam değeri bulunmuş olur.
Bu toplama Riemann toplamı denir. İntegralin Riemann anlamındaki tanımı Riemann toplamındaki bölüntü sayısı olan n nin bir limit içerisinde sonsuza götürülmesiyle elde edilir.
Bu şekildeki integral belirli sınırlar arasında hesaplandığı için, belirli İntegral olarak isimlendirilir. Sınırlar göz önüne alınmadan hesaplanan integrale ise belirsiz integral denir. Bazı durumlarda f(x) göndermesinin integrali F(x) bulunamaz. Bu durumda belirli integral sayısal olarak hesaplanır.
Uzunluk, alan ve hacimlerin hesaplanmasında integral hesabın önemli yeri vardır. Birden fazla değişkene bağlı fonksiyonlarda integral kavramı genişletilebilir ve bu durumda katlı integraller ortaya çıkar.
Riemann'dan sonra soyut kümelerin de integrallenebilmesi amacıyla Lebesgue integrali
geliştirilmiştir.
Köken
Dilimize İngilizceden veya Fransızcadan geçmiş integral sözcüğü "bütüne ait olan" anlamına gelir ve İngilizceye Orta Fransızcaintégral sözcüğünden; Orta Latinceintegralis (tüm yapmak, tümlemek) sözcüğünden; Latinceinteger (tüm, bütün, tam) sözcüğünden gelmiştir. Ayrıca integer sözcüğü tam sayı terimine karşılık olarak İngilizceye geçmiştir[1].
Türkçedetümlev sözcüğü, Osmanlıcamütemmem ile tamamî sözcüklerinin ve İngilizcedeki integral sözcüğünün anlamını karşılamak için türetilmiştir[2]. tümlev sözcüğü, "tümlenmiş şey" anlamına gelir. İsimden fiil yapan /-ev,-av/ yapım ekiyle kullanımda olan tümle[mek] fiilinden; isimden fiil yapan /-le[mek]/ yapım ekiyle muhtemelen Öz Türkçe *tüm (bknz. tümen) kökünden türetilmiştir.
Osmanlıcadamütemmem sözcüğü kullanılmış (Arapçadaki *tm (tam) kökünden gelir) ancak Arapçada şu anda "olgun, evrimleşmiş, bütünleşmiş" anlamındaki tekâmül[1] sözcüğü kullanılmaktadır(kâmil, mükemmel, küme ile aynı kökten: *kml)[3].
Değişken değiştirme, karmaşık problemleri basitleştirmek için kullanılan değişken değiştirme yöntemidir. Bu yöntemde ham (eski) değişken yerine yeni (daha basit) değişken kullanılır. Problem çözüldükten sonra yeni değişken ile elde edilen sonuç, eski değişkende yerine konur.
Basit örnek
Aşağıdaki 6.dereceden bir polinomu ilkel fonksiyon kullanarak çözmek neredeyse imkânsızdır. Bunun için değişken değiştirme yöntemini kullanalım:
Bu denklemde x3 = u değişken değişimini uygulanırsa aşağıdaki denklem elde edilir:
integralinde yukarıdaki sıralamada önce geliyorsa, değişken değiştirmesi yapılır ve geri kalan ifadeler ile denklemi kurulur. Bunu takiben, , denliklerine ulaşılır. Burada , 'in integrali alınmış halidir.
Sonuç olarak verilen integral , ve cinsinden yazılabilir:
=
Örnek 1
integrali değişken değiştirme yöntemiyle integrallenemez bu yüzden kısmi integrasyon uygulamak gerekir. Yukarıdaki indirgeme sırasında logaritma () önceliklidir, dolayısıyla:
,
,
Burada belirsiz integralin keyfi sabiti henüz eklenmemiştir. Bu sabit en son integralde eklenecektir. Kısmi integrasyon formülü uygulandığında,
halini alır. İntegraldeki 'ler sadeleşir. Sonuç bulunur:
Örnek 2
integrali için de kısmi integral uygulanmalıdır. Yukarıdaki indirgeme önceliğine göre polinom () üstel fonksiyondan () önce gelir: