İkinci dereceden denklemler

Vikipedi, özgür ansiklopedi
Şuraya atla: kullan, ara
Katsayıların değişmesiyle denklemin grafiğinin değişimi (a = 1, b = 0, c = 0)

İkinci dereceden denklemler, derecesi 2 olan polinomların oluşturduğu denklemlerdir. Bu denklemlerin genel formu aşağıdaki gibidir

x değişken yani bilinmeyendir ve a, b katsayılar (a ≠ 0 şartıyla), c ise sabit sayıdır. Bu denklemler çarpanlara ayırma, kareye tamamlama ve diskriminant yöntemleri ile çözülürler.

Çözümü[değiştir | kaynağı değiştir]

Çarpanlara ayırma[değiştir | kaynağı değiştir]

Bu yöntem, denklem kolayca çarpanlarına ayrılabiliyorsa tercih edilir. Her bir çarpan sıfıra eşitlenerek kökler bulunur. Örneğin

denkleminde çarpımları 12, toplamları -8 olan sayılar bulunur. Bu sayılar -6 ve -2 dir. Denklem şu şekilde yeniden yazılır:
.
Buradan x=6 ve x=2 bulunur.

Kareye tamamlama ve diskriminant[değiştir | kaynağı değiştir]

Bu yöntemi anlamak için aşağıdaki eşitliği bilmek gerekir,

Denklemimiz şu şekildeydi

x2'nin katsayısını 1 yapmak için denklemi a'ya bölelim (ilk başta a≠0 aldığımız için bu işlem yapılabilir)

ya da

Kareye tamamlamak için ortadaki terimin katsayısının yarısının karesi sabit sayıyı oluşturmalıdır. Bu yüzden her iki tarafa gereken ifadeyi ekleyelim

şimdi sol taraf kare şeklinde yazılmaya hazır

Şimdi sağ tarafın paydasını eşitleyelim

Her iki tarafın da karekökünü alalım. Karekökün özelliğinden dolayı ifade ± şeklinde çıkar

x'i çekersek

elde edilir.

Diskriminant[değiştir | kaynağı değiştir]

Dsikriminant için örnek durumlar
<0: x2+12
=0: −43x2+43x13
>0: 32x2+12x43
Ana madde: Diskriminant

Yukarıda bulunan ifadedeki 'ye denklemin diskriminantı ya da deltası denir. Diskriminant denklem hakkında fikir edinmemizi sağlar

Eğer,

ise denklemin iki gerçek kökü vardır.
ise gerçek kök yoktur, karmaşık kök vardır.
ise tek bir gerçek kök denir, kimi zaman buna daburut da denir. (double root)

Ayrıca bakınız[değiştir | kaynağı değiştir]