Kızılötesi

Vikipedi, özgür ansiklopedi
Atla: kullan, ara
İki insanın orta infrared (ısıl) ışıkla çekilmiş fotoğrafı

Kızılötesi (Kızılaltı, IR veya Infrared) ışınım, dalgaboyu görünür ışıktan uzun fakat terahertz ışınımından ve mikrodalgalardan daha kısa olan elektromanyetik ışınımdır. Teknolojide kabul edilen ismi olan infrared Latince'de aşağı anlamına gelen infra ve ingilizce kırmızı anlamına gelen red kelimelerinden oluşmaktadır ve kırmızı altı anlamına gelir. Kırmızı görünür ışığın en uzun dalgaboyuna sahip rengidir. Kızılötesi ışınımın dalgaboyu 750 nanometre ile 1 mikrometre arasındadır. Normal sıcaklığındaki insan vücudu 10 mikrometre civarında ışıma yapar. [1]

Doğrudan alınan güneşışığı %47 kızılötesi, %46 görünür ışık ve %7 morötesi ışınımdan oluşur.

Kızılötesi ışının altbantları[değiştir | kaynağı değiştir]

Nesneler oldukça geniş bir tayfta kızılötesi ışınım yayarlar, fakat algılayıcılar sadece belli bantgenişliklerini algılayabildikleri için genellikle kızılötesinden kastedilen belirli bantlardır. Bu yüzden kızılötesi bandı daha küçük altbantlara bölünmüştür.

Uluslararası Aydınlatma Komisyonu (CIE) kızılötesi ışınımı aşağıdaki bantlara ayırmayı teklif etmiştir.[2]

  • IR-A: 700 nm–1400 nm
  • IR-B: 1400 nm–3000 nm
  • IR-C: 3000 nm–1 mm

Sıkça kullanılan bir bölümleme biçimi şöyledir:

  • Yakın kızılötesi (NIR, IR-A DIN): 0.75-1.4 µm dalgaboyları arasındadır. Düşük kayıp miktarı yüzünden genellikle fiberoptik iletişimde kullanılmaktadır. Gece görüş ekipmanları da genellikle bu dalgaboyunu kullanır.
  • Orta dalga kızılötesi (MWIR, IR-C DIN): 3-8 µm. Güdümlü füze teknolojisinde kullanılmaktadır.
  • Uzun dalga kızılötesi (LWIR, IR-C DIN): 8–15 µm. Dışarıdan bir ışınım kaynağına gerek duymadan sadece nesnelerin yaydığı ısıyla çalışan termal görüntüleme cihazları bu bandı kullanır.
  • Uzak kızılötesi (FIR): 15-1,000 µm

Astronomide ise kızılötesi tayf aşağıdaki gibi ayırılır: [3]

  • Yakın: (0.7-1) to 5 µm
  • Orta: 5 to (25-40) µm
  • Uzun: (25-40) to (200-350) µm

Uygulamalar[değiştir | kaynağı değiştir]

Kızılötesi görüntüleme hem sivil hem de askeri kullanım alanları bulmuştur. Hedef tespiti, gözlemleme, gece görüşü, güdüm ve takip sistemleri gibi askeri kullanım alanlarının yanında, ısıl verimlilik analizi, uzaktan sıcaklık ölçme, kısa mesafeli kablosuz iletişim, spektroskopi ve hava tahmini gibi alanlarda da kullanılmaktadır. Kızılötesi gökbilim algılayıcılarla donatılmış teleskoplar kullanarak uzayın normal teleskoplarla, moleküler bulutlar gibi uzay tozları yüzünden görüntülenemeyen alanlarını görüntülemekte, gezegenler gibi soğuk cisimleri bulmakta ve Evren'in uzak geçmişinden kalan yüksek miktarda kırmızıya kayma'ya sahip nesneleri görüntülemekte kullanılmaktadır.[4]

Atom seviyesinde kızılötesi enerji dipol momentini değiştirerek molekülleri titreştirmekte kullanılmaktadır. Kızılötesi spektroskopi, kızılötesi frekanslara sahip fotonların soğurulması ve yayınlanmasını araştırır. [5]

Kızılötesi filtreler[değiştir | kaynağı değiştir]

Kızılötesi filtreler birçok farkli malzemeden üretilebilir. Bunlardan bir tanesi görünür ışığın %99'unu kesebilen polysulphone isimli plastiktir. İnfrared filtreler asker gece görüş dürbünlerinde sahneyi kızılötesi ışıkla aydınlatırken, görünür ışığı keserek, dürbünün kullanıcısının dışarıdan görülmesini engeller.

Gece görüş sistemleri[değiştir | kaynağı değiştir]

Kızılötesi, görünür ışığın yeterli olmadığı durumlarda gece görüş sistemlerinde kullanılmaktadır. [6] Gece görüş sistemleri ortamdaki az sayıda fotonun elektronlara çevirilerek, kimyasal ve elektriksel bir süreçle yükseltilmesi esasıyla çalışır. [6]

Kızılötesi görüş sistemleri termografi ile karıştırılmamalıdır. Bu tip sistemler ortamdaki ışığı değil sıcak cisimler tarafından yayılan kızılötesi ışınımı kullanırlar.[7]

Termografi[değiştir | kaynağı değiştir]

Ana madde: Termografi
Bir köpeğin termografik görüntüsü

Kızılötesi ışınım cisinlerin sıcaklığını uzaktan belirlemeye yarar. Termografi (veya termal görüntüleme) genelde askeri ve sanayi amaçlarla kullanılsa da üretim maliyetlerinin düşmesiyle kızılötesi kameralar olarak tüketici pazarına da girmiş bulunmaktadır.

Kızılötesi ışınım her sıcaklıktaki cisim tarafından yayınlandığından (bkz: kara cisim ışınımı) termografi sayesinde hiç ışık olmaksızın bütün ortamı görmek mümkündür. Bir cismin yaydığı kızılötesi ışınım miktarı sıcaklıkla birlikte arttığından, termografi sıcaklık farklarını da görmeyi sağlar.

Takip sistemleri[değiştir | kaynağı değiştir]

Kızılötesi takip sistemleri (kızılötesi güdüm sistemleri olarak da bilinir) hedefin yaydığı kızılötesi ışınımı, hedefi takip etmek için kullanır. Kızılötesi takip sistemi kullanan füzeler, sıcak cisimler kızılötesi ışık yaydığından "ısı güdümlü füze" olarak da bilinir. İnsanlar, araç motorları ve uçaklar gibi birçok nesne ısı ürettiğinden kızılötesi dalgaboylarında arkaplandan kolayca ayırt edilebilir.

Isıtma[değiştir | kaynağı değiştir]

Kızılötesi ışınım bir ısı kaynağı olarak kullanılabilir. Kızılötesi sauna ve bazı elektrikli sobalarda ısınma amacıyla, uçak kanatlarında ise oluşan buzu eritmek amacıyla kullanılırlar. Kızılötesi ışınım aynı zamanda bir sağlık ve fizyoterapi alanında da kullanılmaktadır. Kızılötesi ışınım etraflarındaki havayı ısıtmadan sadece ışık geçirmeyen cisimleri ısıttığından yemek pişirme için de kullanılabilir.

Kızılötesi ısıtma sanayide boya kurutma, plastik üretimi, tavlama, plastik kaynaklama gibi alanlarda da popüler olmaya başlamıştır. Bu tip uygulamalarda kızılötesi ısıtma yavaş yavaş geleneksel fırın ve ısıtma elemanlarının yerini almaktadır. Malzemenin karakteristiğine uygun kızılötesi frekans seçimi enerji verimliliğini de arttırmaktadır.

İletişim[değiştir | kaynağı değiştir]

IR veri iletişimi bilgisayar cihazları arasında kısa mesafe iletişimde kullanılmaktadır. Bu tip aygıtlar genellikle IrDA protokülüne uygun üretilmektedir. Uzaktan kumandalar ve IrDA cihazlar, plastik bir mercek tarafından odaklanıp, dar bir ışın haline getirilen, kızılötesi LED ışığı kullanmaktadır. Bu LEDi kapatıp açarak (modüle ederek) bilgi kodlanır ve karşı tarafa aktarılır. Alıcı bir silikon fotodiyot kullanarak kızılötesi ışığı yeniden elektrik akımına çevirir. Fotodiyot sadece verici tarafından üretilen hızla titreşen sinyala tepki gösterir, bu şekilde ortamdaki yavaş değişen ışığı filtrelemiş olur. Kızılötesi ışık duvarları geçemediğinden başka odalardaki cihazları etkilemez, bu yüzden yoğun yerleşim alanlarında kullanılmaya uygundur. Kızılötesi iletişim aynı zamanda uzaktan kumanda aletlerinde en sık tercih edilen iletişim metodudur.

Kızılötesi lazer kullanan açık hava optik iletişim cihazları şehirlerde noktadan noktaya yüksek hızlı iletişim sağlamanın, fiber optik kablo çekmenin masrafıyla karşılaştırıldığında ucuz bir yoludur.

Kızılötesi lazerler aynı zamanda fiberoptik iletişim sistemlerinde de kullanılır. 1.330nm (en az saçılım) ve 1.550nm (en iyi iletim) frekanslarındaki ışık fiberoptik iletişimde tercih edilir.

Spektroskopi[değiştir | kaynağı değiştir]

Ana madde: Spektroskopi

Kızılötesi spektroskopi atomlar arasındaki bağları analiz ederek molekülleri tanımlamaya yarayan bir tekniktir. Her kimyasal bağ kendine has bir frekansta titreşir. Bir moleküldeki bir grup atom (mesela CH2) bağların esneme ve bükülme hareketlerinden dolayı birden fazla titreşim moduna sahip olabilir. Eğer bir titreşim molekülün dipol momentinde değişime yol açarsa molekül aynı frekansa sahip bir foton soğurur. Çoğu molekülün titreşim frekansları, kızılötesi ışığın frekanslarına denk düşer. Genellikle bu teknik 4000-400cm-1lik orta-kızılötesi ışınım kullanarak organik bileşikleri analiz etmekte kullanılır. Örneğin soğurduğu tüm frenkanslar kaydedilir. Bu tayf kullanılarak örneğin içeriği ve saflığı hakkında bilgi edinilebilir.

Meteoroloji[değiştir | kaynağı değiştir]

Ana madde: Meteoroloji

Meteoroloji uyduları termal ve kızılötesi fotoğraflar çekebilen radyometrelerle donatılmıştır. Bu fotoğrafları kullanarak eğitimli analistler bulutların yüksekliklerini ve tiplerini belirleyebilir, kara ve deniz sıcaklıklarını ölçebilir ve okyanus yüzey olaylarını görebilirler. Tarama genellikle 10,3-12,5 µm frekanslarında yapılır.

Sirrus ve Kümülonimbüs gibi yüksek buz bulutları parlak beyaz, Stratus ve Stratokümülüs gibi daha alçak ve sıcak bulurlar ise gri olarak güzükür. Sıcak yüzey şekilleri koyu gri veya siyah olarak görülür. Kızılötesi görüntülemenin bir dezavantajı stratus veya sis gibi alçak bulutların sıcaklığının yüzey sıcaklığına yakın olması sebebiyle bazen yer ve deniz yüzeyinin görüntülenememesidir. Avantajı ise gece de kızılötesi fotoğraf çekmenin mümkün olması sayesinde hava durumunun sürekli izlenebilmesidir.

Bu tip kızılötesi görüntüler nakliye endüstrisi için çok önemli olan Gulf Stream gibi okyanus akıntılarının ve anaforların görüntülenmesini sağlar. Balıkçılar ve çiftçiler hasatı donmaya karşı korumak ve çıkarılan deniz mahsulü miktarını arttırmak için kara ve deniz sıcaklıklarını öğrenmek ister. El Niño gibi fenomenler de bu şekilde görüntülenebilir. Bilgisayarlı renklendirme teknikleri kullanılarak, normalde siyah-beyaz olan termal resimler, ilgilenilen bilginin daha kolay göze çarpması için renklendirilebilir.

İklimbilim[değiştir | kaynağı değiştir]

İklimbilim alanında, dünya ile atmosfer arasındaki enerji alışverişindeki trendleri izlemek amacıyla atmosferik kızılötesi ışınım takip edilir. Bu trendler dünyanın iklimindeki uzun dönem değişiklikler hakkında bilgi verir. Küresel ısınma araştırmalarında güneş radyasyonu ile birlikte takip edilen en önemli iki parametreden biridir.

Gökbilim[değiştir | kaynağı değiştir]

Ana madde: Gökbilim


Gökbilimciler elektromanyetik tayfın kızılötesi bölümüne düşen cisimleri, aynalar, mercekler ve hatı hal algılayıcıları gibi optik elemanlarla gözler. Bu yüzden de kızılötesi gökbilim, optik gökbilim altında sınıflandırılmıştır. Bir resim oluşturabilmesi için kızılötesi teleskobun parçaları ısı kaynaklarından dikkatlice yalıtılmış olmalıdır. Bu yüzden algılayıcılar sıvı helyum kullanılarak soğutulur.

Dünyadaki kızılötesi teleskopların duyarlılığı atmosferdeki su buharının kızılötesi tayfın önemli bir bölümü soğurmasından dolayı oldukça sınırlıdır. Bu sınırlamadan teleskopu yüksek bir yere yerleştirerek veya teleskobu bir sıcak hava balonu ve uçağın üzerine monte ederek kısmen kurtulmak mümkündür. Uzaydaki teleskoplar bundan etkilenmez, bu yüzden de kızılötesi gökbilim en iyi uzayda yapılır.

Gökbilimciler için tayfın kızılötesi kısmının birçok önemi vardır. Galaksimizdeki soğuk, karanlık gaz ve tozdan oluşan moleküler bulutlar yıldızlar tarafından ısıtıldıklarından kızılötesi ışınım yayarlar. Kızılötesi aynı zamanda henüz görünür ışık vermemeye başlamamış olan önyıldızların da görülmesini sağlar. Yıldızlar yaydıkları enerjinin sadece küçük bir kısmını kızılötesi olarak verirler, bu yüzden kızılötesi gözlem gezegenler gibi soğuk nesneler daha kolay ayırt edilebilmesini sağlar. Görünür ışıkta yıldızın yaydığı parlaklık, gezegenden yansıdan az miktarda ışığı boğar.

Kızılötesi ışık aynı zamanda aktif gökadalerin gaz ve tozla sarılı çekirdeklerini incelemekte de yardımcı olur. Uzaktaki galaksiler de kırmızıya kayma sebebiyle en iyi kızılötesi teleskoplarla görülür.[4]

Sanat tarihi[değiştir | kaynağı değiştir]

Sanat tarihçilerinin verdiği isimle kızılötesi reflektogramlar resimlerin alt katmanlarında gizli çizimleri günışığına çıkartabilir. Karbon siyahı resmin tüm arkaplanını boyamak için kullanılmadığı sürece reflektogramda iyi görüntü verir. Sanat tarihçileri, sanatçının resim üzerinde daha sonradan yaptıkları düzeltmeleri (pentimento) bu metotla görebilirler. Bu bilgi bir resmin orijinali olup olmadığını anlamakta faydalıdır. Genellikle bir resimde ne kadar pentimento varsa orijinal olma olasılığı o derece fazladır. Bu metod aynı zamanda sanatçının çalışma yöntemine dair de ipuçları verir.

Bu tarz bir kullanım diğer tarihçiler arasında da, özellikle çok eski yazılı eserlerin incelenmesinde kullanılmaktadır. [8] Mürekkebin içinde kullanılan karbon oldukça iyi görüntü verir.

Fare yiyen bir yılanın termografik görüntüsü.
Bir Meyve yarasasının termografik görüntüsü.

Biyolojik sistemler[değiştir | kaynağı değiştir]

Çıngıraklı yılanların kafasında bir çift kızılötesi algılayıcı çukuru bulunur. Bu biyolojik algılama sisteminin ısıya duyarlılığı konusu belirsizdir.[9][10]

Isıl algılayıcıları bulunan başka organizmalar arasında pitonlar (Pythonidae familyası)), boaların bazıları (Boidae familyası)), vampir yarasalar (Desmodus rotundus), bazı böcekler (Melanophila acuminata) [11], koyu renk pigmentli kelebekler (Pachliopta aristolochiae ve Troides rhadamantus plateni) ve büyük ihtimalle kan emici böcekler (Triatoma infestans) bulunmaktadır. [12]

Fotobiyomodülasyon[değiştir | kaynağı değiştir]

Yakın kızılötesi ışık kemoterapi neticesinde oluşan ağıziçi ülserin tedavisinde ve yaraların iyileşmesine yardımcı olarak kullanılmaktadır. Herpes tedavisinde kullanımına ilişkin bir takım çalışmalar da vardır.[13] Aynı zamanda merkezi sinir sistemi tedavisinde kullanımı konusunda da araştırmalar yapılmaktadır. [14]

Sağlık riskleri[değiştir | kaynağı değiştir]

Bazı yüksek ısılı sanayi ortamlarında kullanılan kuvvetli kızılötesi ışınım gözlere ve görme duyusuna zarar verebilir. Görünmez olması riski arttırmaktadır. Bu yüzden bu tür yerlerde kızılötesi koruyucu gözlük takılması zorunludur.

Kızılötesi yayan bir cisim olarak Yerküre[değiştir | kaynağı değiştir]

Yerkürenin yüzeyi ve bulutlar güneşin yaydığı görünen ve görünmeyen ışınları soğurarak çoğunu kızılötesi ışınım halinde yeniden atmosfere yayar. Atmosferde su buharı, karbon dioksit, metan, azot oksit, kükürt hekzaflorid ve kloroflorokarbonlar gibi maddeler bu ışınımı soğurarak her yönde yeniden yayarlar. [15]Bu yüzden güneşten gelen enerjinin bir kısmı atmosfer içinde tutulur ve sera etkisi denilen duruma yol açar.[16]

Kızılötesi biliminin tarihçesi[değiştir | kaynağı değiştir]

Kızılötesi ışınımın keşfi genellikle bir 19. yüzyılda yaşamış bir gökbilimci olan William Herschel'a ithaf edilir. Herschel Royal Society of London'dan daha evvel, 1800 yılında bulgularını yayınlamıştır. Herschel bir üçgen prizma kullanarak güneşten gelen ışığı kırmış ve tayfın içinde kırmızının altında bulunan kızılötesi ışınımı bir termometre kullanarak tespit etmiştir. Sonuca şaşırarak bulduğu bu ışınıma "Kalorifik ışınlar" ismini vermiştir. Kızılötesi terimi 19. yüzyılın sonlarına kadar kullanıma girmemiştir. [17]

Diğer önemli tarihler şöyledir:[18]

Ayrıca bakınız[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ Dr. S. C. Liew. "Electromagnetic Waves". Centre for Remote Imaging, Sensing and Processing. http://www.crisp.nus.edu.sg/~research/tutorial/em.htm. Erişim tarihi: 2006-10-27. 
  2. ^ Henderson, Roy. "Wavelength Considerations". Instituts für Umform- und Hochleistungs. http://info.tuwien.ac.at/iflt/safety/section1/1_1_1.htm. Erişim tarihi: 2007-10-18. 
  3. ^ IPAC Staff. "Near, Mid and Far-Infrared". NASA ipac. http://www.ipac.caltech.edu/Outreach/Edu/Regions/irregions.html. Erişim tarihi: 2007-04-04. 
  4. ^ a b "IR Astronomy: Overview". NASA Infrared Astronomy and Processing Center. http://www.ipac.caltech.edu/Outreach/Edu/importance.html. Erişim tarihi: 2006-10-30. 
  5. ^ Reusch, William (1999). "Infrared Spectroscopy". Michigan State University. http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/infrared.htm. Erişim tarihi: 2006-10-27. 
  6. ^ a b "How Night Vision Works". American Technologies Network Corporation. http://www.atncorp.com/HowNightVisionWorks. Erişim tarihi: 2007-08-12. 
  7. ^ Bryant, Lynn (2007-06-11). "How does thermal imaging work?...". http://www.video-surveillance-guide.com/how-does-thermal-imaging-work.htm. Erişim tarihi: 2007-08-12. 
  8. ^ International Dunhuang Project An Introduction to digital infrared photography and its application within IDP -paper pdf 6.4 MB
  9. ^ B. S. Jones; W. F. Lynn; M. O. Stone (2001). "Thermal Modeling of Snake Infrared Reception: Evidence for Limited Detection Range". Journal of Theoretical Biology 209 (2): 201–211. doi:10.1006/jtbi.2000.2256. 
  10. ^ V. Gorbunov; N. Fuchigami; M. Stone; M. Grace; V. V. Tsukruk (2002). "Biological Thermal Detection: Micromechanical and Microthermal Properties of Biological Infrared Receptors". Biomacromolecules 3 (1): 106–115. doi:10.1021/bm015591f. 
  11. ^ Evans, W.G. (1966). "Infrared receptors in Melanophila acuminata De Geer". Nature 202: 211. doi:10.1038/202211a0. 
  12. ^ A.L. Campbell, A.L. Naik, L. Sowards, M.O. Stone (2002). "Biological infrared imaging and sensing". Micrometre 33 (2): 211–225. doi:10.1016/S0968-4328(01)00010-5. 
  13. ^ Hargate G. A randomised double-blind study comparing the effect of 1072-nm light against placebo for the treatment of herpes labialis. Clin Exp Dermatol. 2006 Sep;31(5):638-41.PMID 16780494
  14. ^ Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg. 2006 Apr;24(2):121-8. PMID 16706690
  15. ^ "Global Sources of Greenhouse Gases". Emissions of Greenhouse Gases in the United States 2000. Energy Information Administration. 2002-05-02. http://www.eia.doe.gov/oiaf/1605/gg01rpt/emission.html. Erişim tarihi: 2007-08-13. 
  16. ^ "Clouds & Radiation". http://earthobservatory.nasa.gov/Library/Clouds/. Erişim tarihi: 2007-08-12. 
  17. ^ Herschel Discovers Infrared Light
  18. ^ Miller, Principles of Infrared Technology (Van Nostrand Reinhold, 1992), and Miller and Friedman, Photonic Rules of Thumb, 2004.