Elektromanyetik dalga denklemi

Vikipedi, özgür ansiklopedi

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

burada

Ortamdaki ışık hızıdır ve ∇2 Laplace operatörüdür. Işık hızı, bir vakum ortamı içerisinde c = c0 = 299,792,458 metre/saniye'dir.[1] Elektromanyetik dalga denklemi, Maxwell denklemleri'nden türetilmiştir. Ayrıca, B nin, manyetik akı yoğunluğu" veya manyetik indüksiyon olarak da adlandırılabildiği bilinmelidir.

Elektromanyetik dalga denkleminin kökeni[değiştir | kaynağı değiştir]

Maxwell'den Peter Tait'e bir kartpostal.

Maxwell, 1864'teki "Elektromanyetik Alanın Mekanik Teorisi" isimli makalesinde, Ampère'in devre yasası üzerine 1861'deki yayınladığı Kuvvetin fiziksel çizgileri isimli makalesinin 3. kısmında yaptığı hatayı düzeltti. 1864'teki Electromagnetic Theory of Light[2] başlıklı yayınının Part VI kısmında Maxwell, yer değiştirme akımını elektromanyetizmanın diğer bazı denklemleriyle birleştirerek, hız (ışık hızına eşit) bileşenli bir dalga denklemi buldu. Bunu şöyle yorumladı:

Sonuçların uyuşması; ışık ve manyetizmanın aynı özün bir sonucu olduğunu ve ışığın, elektromanyetik yasalarına göre, alan boyunca yayılan; elektromanyetik bir bozulma olduğunu gösteriyor gibi duruyor.[3]

Modern fizikte; çok daha kullanışlı olan ve Ampère devre yasasının düzeltilmiş hali ile Faraday indüksiyon yasasının birleştirilmesi sonucu elde edilen yöntem, Maxwell'in elektromanyetik dalga denklemi çıkarımlarının yerini almıştır.

Modern yöntemi kullanarak, bir vakum ortamı içindeki elektromanyetik dalganın denklemini bulmak için; öncelikle, Maxwell denklemlerinin modern 'Heaviside (iyonosfer)' formuyla başlamalıyız. Bir vakum ortamı içinde ve yüksüz bir boşlukta, bu denklemler şöyledir:

Burada ρ = 0'dır, çünkü boşlukta yük yoğunluğu yoktur.

Rotasyonel denklemlerin rotasyonelini alırsak:

Vektör formunu kullanarak:

'nin boşlukta herhangi bir vektör fonksiyonu olduğu yerde, dalga denklemine dönüşür:

burada

boşluktaki ışık hızını temsil eder.

Homojen dalga denkleminin eş değişkin (kovaryant) formu[değiştir | kaynağı değiştir]

Enine harekette zaman genişlemesi. Işık hızının bütün ivmelenmeyen referans sistemlerinde sabit ve aynı olma gerekliliği Özel Görelilik Teorisi'ne çıkar.

Bu rölativistik denklemler karşı değişkin (kontravaryant) formda yazılmış şekli şöyledir:

burada elektromanyetik dört-potansiyeli şu şekildedir:

Lorenz gösterge koşuşu ile:

burada

d'Alembertian operatörüdür. (Kare kutu, bir yazım hatası değildir, bu operatörün sembolüdür.)

Eğri uzay-zamanda homojen dalga denklemleri[değiştir | kaynağı değiştir]

Elektromanyetik dalga denklemi iki şekilde düzeltilmiştir; türev ile eşdeğişkin türevi değiştirilmiştir ve eğilmeye bağlı yeni bir terim eklenmiştir.

burada Ricci eğilme tensörü ve noktalı virgül eş değişkin türevlenmesini ifade eder.

Lorenz gösterge (gauge) koşuşunun eğri uzay-zamanda genelleştirilmesi şöyle varsayılır:

Homojen olmayan elektromanyetik dalga denklemi[değiştir | kaynağı değiştir]

Yerelleştirilmiş zamana bağlı değişen yük ve akım yoğunlukları boşlukta elektromanyetik dalga kaynağı gibi davranırlar. Maxwell denklemleri kaynakları olan dalga denklemleri şeklinde yazılabilir. Kaynakların dalga denklemlerine eklenmesi kısmi diferansiyel denklemlerini homojen olmayan denklemlere dönüştürür.

Homojen elektromanyetik dalga denklemlerinin çözümleri[değiştir | kaynağı değiştir]

Bu 3 boyutlu diyagram doğrusal olarak poliarize olan düzlem dalgasının soldan sağa aynı dalga denklemleriyle yayıldığını gösterir, burada ve

Elektromanyetik dalga denkleminin genel çözümü aşağıdaki dalgaların doğrusal süperpozisyonuyla bulunur:

ve

burada

açısal frekanstır (radyan bölü saniye olarak),
dalga vektörüdür (radyan bölü metre olarak)

g fonksiyonu genellikle sinüs dalgası şeklinde olsa da her zaman sinüsoidal ya da periyodik olmak zorunda değildir. Uygulamada, herhangi bir gerçek elektromanyetik dalga uzayda ve zamana sonlu olacağı için g sonsuz bir periyodikliğe sahip olamaz. Sonuç olarak, Fourier ayrışma teorisi üzerinden, gerçek bir dalga sonsuz sayıda sinüsoidal frekansların süperpozisyonundan oluşmalıdır.

Ek olarak, geçerli bir çözüm için, dalga vektörü ve açısal frekans birbirinden bağımsız değildir; dağılım ilişkisine uymak zorundadırlar:

burada k dalga numarasıdır ve λ dalgaboyudur.

Monokromatik, sinüsoidal kararlı durum[değiştir | kaynağı değiştir]

Dalga denkleminin en kolay çözümleri, elimizde tek frekanslı sinüsoidal dalga formlarının olduğunu varsaymamız sonucu olarak ortaya çıkar.

burada

  • imajiner birimdir,
  • açısal frekanstır (radyan bölü saniye olarak),
  • frekanstır (hertz olarak),
  • Euler'in formülüdür.

Düzlem dalga çözümleri[değiştir | kaynağı değiştir]

Bir normal (yüzeye dik) birim vektör tarafından tanımlanan bir düzlem düşünün.

Dalga denklemlerinin düzlemsel yayılan dalga çözümleri şu şekildedir:

ve

burada

pozisyon vektörüdür (metre olarak).

Bu çözümler, normal vektör yönünde ilerleyen düzlemsel dalgalar içindir. Eğer z yönünü yönü olarak tanımlarsak ve x yönünü yönü olarak tanımlarsak, Faraday yasasına göre manyetik alan çizgileri y yönünde olur ve elektrik alanla şu ilişki içerisindedir: . Elektrik alanın ve manyetik alanın diverjansı sıfır olduğu için ilerleme yönünde herhangi bir alan yoktur.

Bu çözüm, doğrusal polarize dalga denklemlerinin çözümüdür. Ayrıca alanların normal vektör etrafında döndüğü dairesel polarize çözümler de vardır.

Spektral ayrışım[değiştir | kaynağı değiştir]

Maxwell denklemleri vakum ortamında doğrusal oldukları için çözümler sinisoidlerin süperpozisyonuna ayrıştırılabilirler. Bu, diferansiyel denklemlerin çözümü için kullanılan Fourier dönüşümünün temelidir. Elektromanyetik dalga denkleminin sinüsoidal çözümü şu şekli alır:

ve

burada

zamandır (saniye olarak),
açısal frekanstır (radyan bölü saniye olarak),
dalga vektörüdür (radyan bölü metre olarak),
faz açısıdır (radyan olarak).

Dalga vektörü açısal frekansla şu ilişki içerisindedir:

burada k dalga numarasıdır ve λ dalga boyudur.

Elektromanyetik spektrum, dalga enerjilerinin (büyüklüklerinin), dalga boyunun bir fonksiyonu olarak grafiğinin çizilmesidir.

Çok kutuplu açılım[değiştir | kaynağı değiştir]

Monokromatik alanların zamanla şu şekilde değiştiğini varsayalım: . Eğer Maxwell denklemlerini B ifadesini yok etmek için kullanırsak, elektromanyetik dalga denklemi E için Helmholtz denklemine indirgenmiş olur.

Yukarıda verildiği gibi k = ω/c. Alternatif olarak, E ifadesi de B için yok edilebilir ve şu elde edilir:

Frekansı ω olan bir elektromanyetik alan bu iki denklemin toplamı olarak yazılabilir. Helmholtz denkleminin üç boyutlu çözümleri katsayıları küresel Bessel fonksiyonlarıyla orantılı olan küresel harmoniklerin açılım şeklinde ifade edilebilr. Ancak, bu açılımları E ve B ifadelerinin her bir vektörel bileşenine uygularsak çözümlerimiz diverjansları sıfır olan sonuçlar vermeyebilir. (E = B = 0). Bu nedenle katsayılar üzerinde bazı sınırlamalara ihtiyaç duyarız.

Çok kutuplu açılım bu zorluğu, eğer E veya B ifadeleri yerine r • E' veya r • B ifadelerini küresel harmoniklerde açarsak, önleyecektir. Bu açılımlar yine Helmholtz denklemlerini E ve B için çözecektir. Divejansı sıfır olan bir alan F için ∇2 (r • F) = r • (∇2 F). Genel bir elektromanyetik alan için çıkan ifadeler:

,

burada ve (l, m) derecedemn elektrik çok kutuplu alanlardır, ve buna karşılık gelen manyetik çok kutuplu alanlardır ve aE(l,m) ve aM(l,m) açılım katsayılarıdır. Çok kutuplu alanlar şu şekilde verilir:

,

burada hl(1,2)(x) Küresel Hankel fonksiyonlarıdır, El(1,2) ve Bl(1,2) sınır koşulları kullanılarak belirlenir, normalize edilmiş vektör küresel harmoniktir, yani:

Elektromanyetik alanın çok kutuplu açılımının küresel simetrisi olan birçok alanda uygulamasının olduğu görüyoruz. Örnek olarak, anten çizgesi veya nükleer gama ışını verilebilir. Bu uygulamalarda, birisi uzak alanda yayılan güçle ilgilidir. Bu bölgelerde E ve B alanları şunların asimptotudur:

Zaman-ortalamalı yayılan gücün açısal dağılımı şöyle bulunur:

Diğer çözümler[değiştir | kaynağı değiştir]

Elektromanyetik dalga denklemleri için başka küresel ve silindirik olarak simetrik olan analitik çözümler de bulmak mümkündür.

Küresel koordinatlarda dalga denklemi çözümleri aşağıdaki gibi yazılabilir:

,

ve

Bunlar küresel Bessel fonksiyonu olarak yeniden yazılabilir.

Silindirik koordinatlarda dalga denklemi çözümleri sıradan tam sayı derecesinden Bessel fonksiyonudur.

Ayrıca bakınız[değiştir | kaynağı değiştir]

Teori ve deney[değiştir | kaynağı değiştir]

Uygulamalar[değiştir | kaynağı değiştir]

Biyografiler[değiştir | kaynağı değiştir]

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ Current practice is to use c0 to denote the speed of light in vacuum according to ISO 31. 1983 tarihli orijinal Recommendation'da, sembol,c, bu amaç için kullanılmıştır. See NIST Special Publication 330, Appendix 2, p. 45 3 Haziran 2016 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ Maxwell 1864, page 497.
  3. ^ See Maxwell 1864, page 499.

Konuyla ilgili yayınlar[değiştir | kaynağı değiştir]

Elektromanyetizma[değiştir | kaynağı değiştir]

Dergi yazıları[değiştir | kaynağı değiştir]

  • Maxwell, James Clerk, "A Dynamical Theory of the Electromagnetic Field", Philosophical Transactions of the Royal Society of London 155, 459-512 (1865). (This article accompanied a December 8, 1864 presentation by Maxwell to the Royal Society.)

Lisans seviyesi ders kitapları[değiştir | kaynağı değiştir]

Lisansüstü seviye ders kitapları[değiştir | kaynağı değiştir]

Vektör kalkülüsü[değiştir | kaynağı değiştir]

  • P. C. Matthews Vector Calculus, Springer 1998, ISBN 3-540-76180-2
  • H. M. Schey, Div Grad Curl and all that: An informal text on vector calculus, 4th edition (W. W. Norton & Company, 2005) ISBN 0-393-92516-1.