Fourier analizi

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

Doğadaki tüm periyodik fonksiyonlar, birbirine dik iki farklı periodik fonksiyonun artan frekanslardaki değerlerinin dik toplamı şeklinde gösterilebilir. Fourier bu toplamı sinüs ve kosinüs fonksiyonlarını kullanarak göstermiştir. Günümüzde Euler bağıntısı kullanılarak sinüs ve kosinüs fonksiyonları yerine kompleks üslü sayılar kullanılmaktadır. Fonksiyonların komplex üslü sayıların toplamı olarak gösterilmesine Fourier serisi gösterimi denir. Fourier açılımı sayesinde fonksiyonların frekansı kolaylıkla belirlenebilir. Bu yaklaşım farklı periyodlarda girdiye maruz kalan sistemlerin çıktısını ve çıktısının frekansını belirlemekte kolaylık sağlar.

Fourier söz konusu seri açılımını iki farklı yüzeyi farklı ısılarda olan katı bir cismin sıcaklık dağılımını hesaplamak için kullanmıştır. Bu yaklaşım yoğun bir işlem çabası gerektirdiğinden ve sonuçta yaklaşık sonuç verdiğinden kullanılmamaktadır. Günümüzde Fourier analizi bilgi ve sinyal işleme ve titreşim analizinde kullanılmaktadır.

İlgili maddeler[değiştir | kaynağı değiştir]

Fourier Dönüşümü