Arif Salimov

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

Arif Salimov, Geometrici, Prof. Dr.

Arif Salimov

Hayatı[değiştir | kaynağı değiştir]

Arif Salimov (Azerice: Arif Səlimov) 1956 yılında Azerbaycan’ın Ağsu şehrinde dünyaya gelmiş, 1973'te Ağsu şehri 1 numaralı lisesini bitirmiş ve 1973-1978 yıllarında Bakü Devlet Üniversitesi Mekanik-Matematik fakültesi öğrencisi olmuştur. 1978-1980 yıllarında AMEA (Azerbaycan Milli İlimler Akademisi) Kibernetik Enstitüsünde mühendis-matematikçi olarak çalışmış, 1980 yılında Rusya’nın Kazan Devlet Üniversitesinin doktora programına "Geometri ve Topoloji" ihtisası üzere kabul olunmuş, 1983 yılında bu programı bitirmeden önce PhD tezini savunmaya takdim ederek bu üniversitenin hususi mükafatını kazanmış ve mezun olmuştur. 1984 yılı Ocak ayında Kazan şehrinde meşhur Sovyet geometri alimi V.V.Vişnevskinin[1][2] tez danışmanlığı ile PhD tezini savunmuştur. 1983 yılından 1988 yılına kadar Bakü Devlet Üniversitesinin Geometri bölümünde asistan, 1988-1995 yıllarında ise doçent olarak çalışmıştır. 1998 yılının Eylül ayında Kazan Devlet Üniversitesinde "Geometri ve Topoloji" ihtisası üzere DSc (Habilitasyon) tezini savunmuştur. Arif Salimov Azerbaycan’da, "Geometri ve Topoloji" ihtisası üzere bu ilmi dereceye sahip olan yegane bilim adamıdır[3]. 1995 yılından itibaren Türkiye’nin Atatürk Üniversitesinde çalışmaya başlamış, halen aynı Üniversitenin Matematik bölümünde profesör olarak çalışmaya davam etmektedir[4]. Tensör operatörleri teorisinde aldığı esaslı sonuçlar ve lift teorisinde yaratmış olduğu yeni metot[5] ile diferansiyel geometri sahasında dünyada tanınmış uzmandır. TÜBİTAK tarafından birçok destek ve teşvik mükafatları almış, 10-dan çok talebesi PhD tezini savunmuşlar. 100-den çok ilmi eseri var[6] ve bunlardan bir çoğu ABD, Japonya, Güney Kore, Çin, Hindistan, Singapur, Meksika, Rusya, İngiltere, Fransa, İtalya, Hollanda, Polonya, Türkiye vesaire ülkelerin SCIE[7][8][9] kategorili en yüksek bilimsel dergilerinde basılmıştır. Arif Salimov' un "Tensor operators and their applications" isimli monografisi "Nova Science Publishers, Inc., New York" yayınevi tarafından yayınlanmış[10] ve Atatürk Üniversitesinin “2013 Bilimsel Teşvik Birincilik Ödülü”ne layık görülmüştür.

Seçilmiş yayınları[değiştir | kaynağı değiştir]

  • 1. Салимов А.А. Почти аналитичность римановой метрики и интегрируемоть структуры. Тр. геом. сем., Казанск. Ун-т, вып. 15 (1983), 72-78 (Russia).
  • 2. Салимов А.А. Fi-орератор и почти аналитичность. Дифференц. геометрия, Саратовск. Ун.-т, вып. 7 (1983), 73-80 (Russia).
  • 3. Салимов А.А. Голоморфно-проективные преобразования связности на многообразиях со структурами, определяемыми алгебрами. Тр. геом. сем., Казанск. Ун-т, вып. 16 (1984), 91-103 (Russia).
  • 4. Салимов А.А. Замечание о почти интегрируемости структуры. Изв. вузов Матем., 1985, N 12, 70-71. Salimov A.A. A remark on almost-integrability of a structure; translation in Soviet Math. (Iz. VUZ) 29 (1985), no. 12, 99-101 (SCI-Exp., Russia, USA).
  • 5. Салимов А.А. Почти интегрируемости полиаффинорной структуры. Изв. вузов Матем., 1988, N 6, 78-80. Salimov A.A. Almost integrability of a poly-affine structure; translation in Soviet Math. (Iz. VUZ) 32 (1988), no. 6, 110-113 (SCI-Exp., Russia, USA).
  • 6. Салимов А.А. Квазиголоморфное отображение и тензорное расслоение. Изв. вузов Матем., 1989, N 12, 73-76. Salimov A.A. Quasiholomorphic mapping and a tensor bundle; translation in Soviet Math. (Iz. VUZ) 33 (1989), no. 12, 89-92 (SCI-Exp., Russia, USA).
  • 7. Салимов А.А. Квази A-голоморфное сечение гибридного подрасслоения. Тр. геом. сем., Казанск. Ун-т, вып. 21 (1991), 85-93 (Russia).
  • 8. Салимов А.А. Почти psi-голоморфные тензоры и их свойства. ДАН России, т.324 (1992), N 3, 533-536. Salimov A.A. Almost psi-holomorphic tensors and their properties; translation in Russian Acad. Sci. Dokl. Math. 45 (1992), no. 3, 602-605 (1993) (SCI-Exp., Russia, USA).
  • 9. Салимов А.А. Полные лифты тензорных полей в чистое тензорное подрасслоение. Тр. геом. сем., Казанск. Ун-т, вып. 22 (1994), 69-78 (Russia).
  • 10. Салимов А.А. Новый метод в теории лифтов тензорных полей в тензорное расслоение. Изв. вузов Матем., 1994, N 3, 69-75. Salimov A.A. A new method in the theory of liftings of tensor fields in a tensor bundle; translation in Russian Math. (Iz. VUZ) 38 (1994), no. 3, 67-73 (Russia, USA).
  • 11. Salimov A.A. Generalized Yano-Ako operator and the complete lift of tensor fields. Tensor (N.S.) 55 (1994), no. 2, 142-146 (Japan).
  • 12. Салимов А.А. Лифты полиаффинорных структур на чистых сечениях тензорного расслоения. Изв. вузов Матем., 1996, N 10, 55-62. Salimov A.A. Lifts of poly-affinor structures on pure sections of a tensor bundle; translation in Russian Math. (Iz. VUZ) 40 (1996), no. 10, 52-59 (Rusiia, USA).
  • 13. Mağden A., Kamali M., Salimov A.A. The Tachibana operator and transfer of lifts. Turkish J. Math. 22 (1998), no. 1, 109-117 (Turkey).
  • 14. Salimov A.A., Mağden A. Complete lifts of tensor fields on a pure cross-section in the tensor bundle . Note Mat. 18 (1998), no. 1, 27-37 (1999) (Italia).
  • 15. Kopuzlu A., Salimov A.A. Geodesics in a tensor bundle. Turkish J. Math. 23 (1999), no. 2, 281-286 (Turkey).
  • 16. Mağden A., Kadıoğlu E., Salimov A.A. Applications of the Tachibana operator on problems of lifts. Turkish J. Math. 24 (2000), no. 2, 173-183 (Turkey).
  • 17. Salimov A.A., Kadıoğlu E. Lifts of derivations to the semitangent bundle. Turkish J. Math. 24 (2000), no. 3, 259-266 (Turkey).
  • 18. Магден А., Салимов А.А. Горизонтальные лифты тензорных полей на сечения тензорного расслоения. Изв. вузов Матем., 2001, N 3, 77-80. Magden A., Salimov A.A. Horizontal lifts of tensor fields to sections of the tangent bundle; translation in Russian Math. (Iz. VUZ) 45 (2001), no. 3, 73-76 (Russia, USA).
  • 19. Akbulut S., Özdemir M., Salimov A.A. Diagonal lift in the cotangent bundle and its applications. Turkish J. Math. 25 (2001), no. 4, 491-502 (Turkey).
  • 20. Cengız N., Salımov A.A. Complete lifts of derivations of special types to the tensor bundle. Math. Balkanica (N.S.) 15 (2001), no. 3-4, 265-274 (Bulgaria).
  • 21. Cengiz N., Salimov A.A. Complete lifts of derivations to tensor bundles. Bol. Soc. Mat. Mexicana (3) 8 (2002), no. 1, 75-82 (SCI-Exp.,Mexico).
  • 22. Cengiz N., Salimov A.A. Geodesics in the tensor bundle of diagonal lifts. Hacet. J. Math. Stat. 31 (2002), 1-11 (Turkey).
  • 23. Cengiz N., Salimov A.A. Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142 (2003), no. 2-3, 309-319 (SCI-Exp., USA).
  • 24. Салимов А.А., Ченгиз Н. Поднятие римановых метрик на тензорные расслоения. Изв. вузов Матем., 2003, N 11, 51-59. Salimov A.A., Chengiz N. Lift of Riemannian metrics to tensor bundles; translation in Russian Math. (Iz. VUZ) 47 (2003), no. 11, 47-55 (2004) (Russia, USA).
  • 25. Mağden A., Cengiz N., Salimov A.A. Horizontal lift of affinor structures and its applications. Appl. Math. Comput. 156 (2004), no. 2, 455-461 (SCI-Exp., USA).
  • 26. Mağden A., Salimov A.A. Geodesics for complete lifts of affine connections in tensor bundles. Appl. Math. Comput. 151 (2004), no. 3, 863-868 (SCI-Exp., USA).
  • 27. Iscan M., Salimov AA. On a connection between the theory of Tachibana operators and the theory of B-manifolds. Hacet. J. Math. Stat. 34 (2005), 47-53 (Turkey).
  • 28. Подковырин А.С., Салимов А.А., Шурыгин В.В. Очерк научной и педагогической деятельности В.В.Вишневского (к 75-летию со дня рождения). Уч. Запис. Казан. Гос. Ун.-та 147 (2005), кн.1, 26-36 (Russia).
  • 29. Cengiz N., Tarakci O., Salimov A.A. A note on Kaehlerian manifolds. Turkish J. Math. 30 (2006), no. 4, 439-445 (Turkey).
  • 30. Magden A., Salimov A.A. On applications of the Yano-Ako operator. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 45 (2006), 135-141 (Czech).
  • 31. Salimov A.A., Iscan M., Etayo F. Paraholomorphic B-manifold and its properties. Topology Appl. 154 (2007), no. 4, 925-933 (SCI-Exp., Holland).
  • 32. Gezer A., Salimov A.A. The lifts of a derivation determined by and their applications. Math. Balkanica (N.S.) 21 (2007), no. 1-2, 71-78 (Bulgaria).
  • 33. Салимов А.А. Геометрия жизненного пути (О научной деятельности проф.В.А. Игошина), В кн.: Твои, Россия, Имена, Изд.-во “Диалог Культур”, Н.Новгород, 2008, с.141-142(Russia).
  • 34. Gezer A., Salimov A.A. Diagonal lifts of tensor fields of type (1,1) on cross-sections in tensor bundles and its applications. J. Korean Math. Soc. 45 (2008), no. 2, 367-376 (SCI-Exp., South Korea).
  • 35. Gezer A., Salimov A.A. Almost complex structures on the tensor bundles. Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 2, 283-296 (SCI-Exp., Saudi Arabia).
  • 36. Salimov A.A., Iscan M., Akbulut K. Some remarks concerning hyperholomorphic B-manifolds. Chin. Ann. Math. Ser. B 29 (2008), no.6, 631-640 (SCI-Exp., China).
  • 37. Salimov A.A., Kazimova S. Geodesics of Cheeger-Gromoll metric. Turkish J. Math. 33 (2009), no.1, 99-105 (SCI-Exp., Turkey).
  • 38. Salimov A.A., Akbulut K., Aslanci S. A note on integrability of almost product riemannian structures. Arab. J. Sci. Eng. Sect. A Sci. 34 (2009), no.1, 153-157 (SCI-Exp., Saudi Arabia).
  • 39. Iscan M., Salimov AA. On Kahler-Norden manifolds. Proc. Indian Acad. Sci.(Math. Sci.) 119 (2009), no.1, 71-80 (SCI-Exp., India).
  • 40. Salimov AA., Akbulut K. A note on a paraholomorphic Cheeger-Gromoll metric. Proc. Indian Acad. Sci.(Math. Sci.) 119 (2009), no.2, 187-195 (SCI-Exp., India).
  • 41. Salimov A.A., Gezer A., Akbulut K. Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math. 6 (2009), no.2, 135-147 (SCI-Exp., Italia).
  • 42. Magden A., Salimov A.A. Complete lifts of tensor fields on a pure cross-section in the tensor bundle. J. Geom. 93 (2009), no.1-2, 128-138 (Germany).
  • 43. Tarakci O., Gezer A., Salimov A.A. On solutions of IHPT equations on tangent bundles with the metric II+III. Math. Comput. Modelling. 50 (2009), no.7-8, 953-958 (SCI-Exp., England).
  • 44. Salimov A.A. Nonexistence of Para-Kahler-Norden warped metrics. Int. J. Geom. Methods Mod. Phys. 6(2009), no.7, 1097-1102 (SCI-Exp., Singapore).
  • 45. Gezer A., Akbulut K., Salimov A.A. Infinitesimal holomorphically projective transformations on tangent bundles with respect to the synectic metric tensor. JP J. Geom. Topol. 9(2009), no.3, 225-237 (India).
  • 46. Salimov A.A., Iscan M. On the geomtry of B-manifolds. Уч. зап. Казан. Гос. Ун.-та. Физ.-матем. науки ( Kazan. Gos. Univ. Učen. Zap.). 151(2009), kn.4, 231-239. (Short Report in Proceedings of the N. I. Lobachevskii Mathematical Center. Kazanskoe Matematicheskoe Obshchestvo, Kazan. 39(2009), 96-102) (Russia).
  • 47. Salimov A.A., Iscan M. On Norden-Walker 4-manifolds. Note Mat. 30(2010), no.1, 111-128 (Italia).
  • 48. Gezer A., Tarakci O., Salimov A.A. On the geometry of tangent bundles with the metric II+III. Ann. Polon. Math. 97(2010), no.1, 73-85 (SCI-Exp., Poland).
  • 49. Aslanci S., Kazimova S., Salimov A.A. Some notes concerning Riemannian extensions. Ukrainian Math. J. 62(2010), no.5, 661-675 (SCI-Exp., Ukraine).
  • 50. Salimov A.A., Agca F. On para-Nordenian structures. Ann. Polon. Math. 99(2010), no.2, 193-200 (SCI-Exp., Poland).
  • 51. Салимов А.А. О моём дорогом Учителе. В кн.: Воспоминания о профессоре В.В.Вишневском, Изд.-во: Казан. Гос. Ун.-т, Казань, 2010, с.40-44 (Russia).
  • 52. Salimov A.A., Iscan M., Turanli S. Differential geometry of Walker manifolds. “Relativity, Gravity and Geometry, Petrov 2010 Anniversary Symposium On General Relativity and Gravitation”, Contributed papers, Kazan (2010), 244-253. Selected for the special memorial issue of the Journal “Uchenye Zapiski Kazanskogo Universiteta” (Proceedings of Kazan University. Physics and Mathematics Series), Vol. 153, Book 3, 2011, 264-271 (Russia).
  • 53. Salimov A.A., Iscan M. Some properties of Norden-Walker metrics. Kodai Math. J. 33(2010), no.2, 283-293 (SCI-Exp., Japan).
  • 54. Salimov A.A., Iscan M., Akbulut K. Notes on para-Norden-Walker 4-manifolds. Int. J. Geom. Methods Mod. Phys. 7(2010), no.8, 1331-1347 (SCI-Exp., Singapore).
  • 55. Salimov A.A. On operators associated with tensor fields. J. Geom. 99 (2010), no.1-2, 107-145 (Germany).
  • 56. Salimov A.A., Agca F. Some properties of Sasakian metrics in cotangent bundles. Mediterr. J. Math. 8(2011), no.2, 243-255 (SCI-Exp., Italia).
  • 57. Salimov A.A., Gezer A. On the geometry of the (1,1)-tensor bundle with Sasaki type metric. Chin. Ann. Math. Ser. B 32(2011), no.3, 369-386 (SCI-Exp., China).
  • 58. Salimov A.A., Gezer A., Aslanci S. On almost complex structures in the cotangent bundle. Turkish J. Math. 35(2011), no.3, 487-492 (SCI-Exp., Turkey).
  • 59. Salimov A.A. A note on the Goldberg conjecture of Walker manifolds. Int. J. Geom. Methods Mod. Phys. 8(2011), no.5, 925-928 (SCI-Exp., Singapore).
  • 60. Salimov A.A., Aslanci S. Applications of Fi-operators to the hypercomplex geometry. Adv. Appl. Clifford Algebr. 22(2012), no. 1, 185-201 (SCI-Exp., Switzerland).
  • 61. Iscan M., Gezer A., Salimov A.A. Some properties concerning curvature tensors of eight-dimensional Walker manifolds. J. Math. Phys. Anal. Geom. 8(2012), no.1, 21-37 (SCI-Exp., Ukraine).
  • 62. Salimov A.A., Gezer A., Iscan M. On para-Kahler-Norden structures on the tangent bundles. Ann. Polon. Math. 103(2012), no.3, 247-261 (SCI-Exp., Poland).
  • 63. Salimov A. Tensor operators and their applications. Nova Science Publishers, Inc., New York, 2012, ISBN 978-1-62257-021-8 (Monograph/Book, USA).
  • 64. Salimov A.A., Cengiz N., Behboudi Asl M. On holomorphic hypercomplex connections. Adv. Appl. Clifford Algebr. 23(2013), no. 1, 179-207 (SCI-Exp., Switzerland).
  • 65. Gezer A., Cengiz N., Salimov A.A. On integrability of Golden Riemannian structures. Turkish J. Math. 37(2013), no.4, 693-703 (SCI-Exp., Turkey).
  • 66. Agca F., Salimov A.A. Some notes concerning Cheeger-Gromoll metrics. Hacet. J. Math. Stat. 42 (2013), no.5, 533-549 (SCI-Exp., Turkey).
  • 67. Salimov A.A., Cayir H. Some notes on paracontact structures. C.R. Acad. Bulgare Sci. 66 (2013), no.3, 331-338 (SCI-Exp., Bulgaria).
  • 68. Salimov A.A., Cakan R. On bicomplex-holomorphic manifolds. Int. J. Geom. Methods Mod. Phys. 10(2013), no.7, 1320010 [8 pages] (SCI-Exp., Singapore).
  • 69. Salimov A.A., Turanli S. Curvature properties of anti-Kähler-Codazzi manifolds. C.R. Math. Acad. Sci. Paris. 351(2013), no.5-6, 225-227 (SCI-Exp., France).
  • 70. Salimov A.A., Akbulut K., Turanli S. On an isotropic property of anti-Kähler-Codazzi manifolds. C. R. Math. Acad. Sci. Paris. 351(2013), no. 21-22, 837-839 (SCI-Exp., France).
  • 71. Yıldırım F., Salimov A.A. Semi-cotangent bundle and problems of lifts. Turkish J. Math. 38(2014), no.2, 325-339 (SCI-Exp., Turkey).
  • 72. Behboudi Asl M., Salimov A.A. On anti-Hermitian metric connections preserving a bicomplex structure. Adv. Appl. Clifford Algebr. 24(2013), no. 1, 11-21 (SCI-Exp., Switzerland).
  • 73. Salimov A.A., Ocak F. On the geometry of the cotangent bundle with Sasakian metrics and its applications. Proc. Indian Acad. Sci. (Math. Sci.) 124(2014), no. 3,  427-436 (SCI-Exp., India).
  • 74. Salimov A.A., Gezer A. Norden structures of Hessian type. Turkish J. Math. 38(2014), no.3, 462-469 (SCI-Exp., Turkey).
  • 75. Salimov A.A. On anti-Hermitian metric connections. C. R. Math. Acad. Sci. Paris. 352(2014), no. 9, 731-735 (SCI-Exp., France).
  • 76. Salimov A.A., Cakan R. On deformed Riemannian extensions associated with twin Norden metrics. Chin. Ann. Math. Ser. B (2015) (to appear) (SCI-Exp., China).
  • 77. Cakan R., Akbulut K., Salimov A.A. Musical isomorphisms and problems of lifts. Chin. Ann. Math. Ser. B. (2015) (to appear) (SCI-Exp., China).

Kaynakça[değiştir | kaynağı değiştir]