Harmonik analiz

Vikipedi, özgür ansiklopedi

Harmonik analiz, bir fonksiyon ile onun frekanstaki temsili arasındaki bağlantıları araştırmakla ilgilenen matematik dalıdır. Frekans gösterimi, gerçek doğru üzerindeki fonksiyonlar için Fourier dönüşümü kullanılarak veya periyodik fonksiyonlar için Fourier serisi kullanılarak bulunur. Bazen harmonik analiz yerine kullanılsa da, bu dönüşümlerin diğer alanlara genelleştirilmesi genellikle Fourier analizi olarak adlandırılır. Harmonik Analiz sayı teorisi, temsil teorisi, sinyal işleme, kuantum mekaniği, gelgit analizi ve nörobilim gibi çok çeşitli bilimsel alanlardaki uygulamalarla geniş bir konu haline gelmiştir.

"Harmonik" terimi, "müzikte yetenekli" anlamına gelen Eski Yunanca harmonikos kelimesinden türemiştir.[1] Fiziksel özdeğer problemlerinde, müzik notalarının harmoniklerinin frekansları gibi frekansları birbirinin tamsayı katları olan dalgaları ifade etmeye başlamış ancak sonradan terim orijinal anlamının ötesinde genelleştirilmiştir.

Rn üzerindeki klasik Fourier dönüşümü, özellikle temperlenmiş dağılımlar gibi daha genel nesneler üzerindeki Fourier dönüşümü, halen devam eden bir araştırma alanıdır.

Fourier serileri, harmonik analiz ile fonksiyonel analiz arasında bir bağlantı sağlayan Hilbert uzayları bağlamında incelenebilir. Dönüşüm tarafından eşlenen uzaylara bağlı olarak Fourier dönüşümünün dört versiyonu vardır:

Kaynakça[değiştir | kaynağı değiştir]

Kaynakça[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]