Kullanıcı:Eylulocal12/Bulut Fiziği (2)

Vikipedi, özgür ansiklopedi

Bulut fiziği fiziksel işlemlerdeki çalışmalardır ve bu oluşuma, büyümeye ve atmosfer bulutlarının çökelmesine yol açar. Bulutlar sıvı suyun mikroskobik damlacıklar içerir (ılıman bulutlar), buzların küçük kristalleri (soğuk bulutlar), veya ikisi de (karışık faz bulutları). Bulut damlacıkları başlangıçta su buharının yoğunluğunun yoğun çekirdeğin üzerinde olmasıyla oluşur aynı zamanda Köhler teorisine göre havanın aşırı doymuşluğu kritik değeri aşar .Kelvin etkisinden dolayı bulut yoğunlaşma çekirdeği bulut damlacıkları formasyonu için gereklidir, eğimli yüzeyden dolayı bu buhar basıncındaki doyma ile tasvir edilebilir. Küçük çapta, aşırı doymuşluk miktarı yoğunlaşma çok büyük oluşması için gereklidir, bu doğal bir şekilde gerçekleşmez. Raoult ilkesi, çözelti nasıl buhar basıncına bağlı bunu tasvir eder. Yüksek konsantrasyonda, bulut damlacıkları küçük olduğunda, çekirdeğin oluşumu dışından küçük olması aşırı doymuşluk gerektirir. 

Sıcak bulutlarda, büyük bulut damlacıkları, uç yüksek hızla düşer çünkü küçük damlacıkların üstündeki sürükleme kuvveti büyük damlacıklarınkinden büyüktür. Büyük damlacıklar küçük damlacıklar ile çarpışabilir ve birleşip daha büyük damlalar oluşturabilirler. Damla yeterince büyük olduğundan sonuç olarak yerçekimi sürüklemeden dolayı ivmeden çok büyük olduğundan ivmelenir, damla dünyaya yağış olarak düşer. Çarpışma ve beraberlik karışık faz bulutlarında önemli değildir burada Bergeron işlemi ağır basar. Diğer önemli işlem şudur yağış oluşumları kafiyelidir, çok soğuk sıvı damlalar katı kar taneciği ile çarpıştığında ve toplanıldığında, iki katı kar taneciği çarpışır ve birleşir. Kesin mekanizmada nasıl bulut oluşur ve büyür tam olarak anlaşılamamıştır, fakat bilim adamları tek bir damlanın mikroskobik olarak inceleyerek bulutların şeklini açıklayarak geliştirmiştir. Hava radarı ve uydu teknoloji gelişimi büyük ölçüde bulutlarla ilgili çalışmayı kesinleştirmiştir.

Bulut fiziği tarihi[değiştir | kaynağı değiştir]

Bulut mikro fiziği tarihi 19. yüzyılda gelişmeye başlamıştır ve birçok yayında tanımlanmıştır .[1][2][3] Otto von Guericke bulutlar su baloncuklarından oluşmuştur düşüncesinin kökenidir. 1847'de Agustus Waller damlacıkları mikroskop altında incelemek için örümcek ağı kullandı. Bu gözlemler William Henry Dines tarafından 1880'de ve 1884'te Richard Assmann tarafından onaylandı.

Oluşum: hava nasıl doymuş duruma geçer[değiştir | kaynağı değiştir]

Çiy noktası için soğuk hava[değiştir | kaynağı değiştir]

Cloud evolution in under a minute.
Late-summer rainstorm in Denmark. Nearly black color of base indicates main cloud in foreground probably cumulonimbus.

Adyabatik soğutma: Nemli havanın artışı[değiştir | kaynağı değiştir]

Dünya yüzeyinden su buharlaşırken, bu hava alanının üzerinde nem oluşturur. Nemli hava kuru havadan daha hafiftir ve bu kararsız durum yaratır. Yeterli nemli hava toplandığında, bütün nemli hava yalnız paketler olarak yükselir, karışık çevrelenmiş hava dışında. Yüzey boyunca daha fazla nemli hava oluştuğunda, işlem tekrarlanır, nemli hava ayrık paketleri yükselerek bulutları oluşturur. [4]

Bir veya daha fazla mümkün kaldırma faktörü olduğu zaman bu işlem meydana gelir—siklonik/ön, konvektif veya orografik— havanın içerdiği görünmez su buharının çiy oluşma derecesi için yükselmesine ve soğumasına sebep olur, doymaya başladığındaki sıcaklık. Mekanizmanın arkasındaki temel işlem adyabatik soğutmadır .[5] Yükseklikle atmosferik basınç azalır, böylece işlemdeki artan hava genişlemesi enerji yayar ve hava soğutmasına sebep olur, bu su buharını tutmak için kapasiteyi azaltır. Eğer hava çiy oluşma derecesi için soğutulur ve doymuş duruma geçer, bu normal olarak havayı tutuyor, artık geri alıkonulmuyor ve havada yoğunlaşıyor  .[6]   Doymuş havadaki normalde yoğunlaşmış çekirdeği çeker mesela toz ve tuz parçacıkları bunlar havadaki dolaşımla havaya tutunmak için yeterince küçük parçalar. Bulutta ki su damlacıkları yaklaşık 0.002 mm (0,00008 in) çapındadırlar. Damlacıklar daha büyük damlacık oluşturabilmek için çarpışma yapabilirler bu küçük parçalar için havadaki sürükleme kuvvetinin yerçekimine ağır basmasıyla gerçekleşir.[7]

Konvektif olmayan bulut için, yükseklikte yoğunluk olmaya başlar buna yoğunluk kaldırma seviyesi denir (LCL), buna hava temelinin yüksekliğinin kabaca tanımlanması demektir. Serbest konvektif bulutlar genel olarak konvektif yoğunluk seviyesinin (CCL) yüksekliğinde oluşur. Doymuş havadaki su buharı normal olarak yoğunlaşmış çekirdeği çeker örneğin tuz parçacıkları yeterince küçük sirkülasyonla havada tutulması için. Eğer yoğunlaşma işlemi toposferde donma seviyesinin altında oluşur, çekirdek çok küçük su damlaların içine ulaşmasında yardım eder. Bulutlar aşırı soğuk sıvı damlacıkları donma seviyesinin üzerinde oluşur , while those that condense out at higher altitudes where the air is much colder generally take the form of ice crystals.Yoğunlaşma seviyesinin üzerindeki yoğunlaşmış parçacıkların verimlilik kaybı aşırı doymuşluk için havanın yükselmesine neden olur ve bulutların oluşumu kısıtlatılmasına bağlıdır.[6]

Ön ve siklonik kaldırma[değiştir | kaynağı değiştir]

Durağan havada frontal ve siklon kaldırması onların saf belli oluşlarında oluşur, bu ya çok küçük ya da hiç yüzey ısıtılmasına maruz kalmaz, bu meteoroloji de havada kuvvetlenir ve alçak basıncın merkezi etrafında. [8] Sıcak cephe ekstra tropikal siklonlarla ilgilidir ve bu ılık hava kütlesi düzensiz olmasına rağmen cirriform ve tabaka şeklindeki bulutların geniş alanın üzerinde üretilmesine eğilimlidir, bu durumda kümülüs konjestus veya boran bulutları genellikle temel bulut çökelti katmanında gömülüdür. .[9] Soğuk cephe genellikle hızla hareket eder ve bulutların minik çizgilerinin üretilmesi genelde tratocumuliform, kümüliform veya kümülonimbus sıcak hava kütlesinin sabitliğine bağlıdır[10]

Konvektif kaldırma[değiştir | kaynağı değiştir]

Bir diğer faktör batmayan konvektif yukarı hareketi yüzey seviyesinde önemli gün ışığı sıcaklığına ve nispeten yüksek mutlak neme sebep olur. [6]Bu Dünya'nın yüzeyine ulaştığında güneşin tekrar emilimi uzun dalga radyasyonları gibi gelen kısa dalga radyasyonları üretilir. Bu işlem zemine ulaştıkça havayı ılıtır ve düzensiz bir şekilde hava kütlesini ılık veya sıcak yüzey seviyesinden havadaki soğukluğa dik sıcaklık radyanı yaratarak arttırır. Bu sıcaklık çevredeki hava ile dengeye ulaşana kadar yükselmeye ve soğumaya sebep olur. Düzensiz ılımanlık kümüliform bulutunun oluşumu için izin verilir ve bu eğer hava kütlesi yeterince nemli ise hafif yağmur üretir. Tipik olarak yukarı akım taşınımı yağmurun çökelmesinden önce damlacığın yarıçapının 0.015 millimetreye (0.0006 in) büyümesine sebep olabilir.[11] Damlacıkların eşitlik çapı yaklaşık 0,03 milimetre (0,001 in ).

Eğer yüzeyin yanındaki hava aşırı ılıman ve düzensiz olur, bunun yukarı hareketi çok patlayıcı olabilir ve bu çok yüksek cumulonimbiform bulutları değişik hava durumlarına sebep olabilir. Küçük su parçacıkları bulut gruplarındaki yağmur parçacıklarının bir araya gelmesiyle oluşur, onlar yerçekimi kuvvetinden dolayı Dünya ' da aşağı doğru itilir. Damlacıklar yoğunlaşma seviyesinin aşağısında normalde buharlaşır, fakat düşen damlacıkların güçlü hava yükselişini korumak ve öbür yapabileceklerinin aksine daha uzun süre havada tutabilir. Şiddetli hava yükselişi, saatte hızı 180 mile kadar ulaşabilir. [12] Yağmur damlacıkları uzun süre havada kaldığında, bunlar daha büyük damlacıklar halini alır ve sonunda ağır kar yağışı olarak düşer.

Donma seviyesinin üzerinde olan ve taşınan yağmur damlaları önce çok soğur ve sonra küçük dolulara dönüşür. Donmuş buz çekirdeği 0,5 inç (1,3 cm) havanın yükselişlerinden birinde bir boyutu toplanabilir ve birçok havanın yükselişinde dönebilir ve sonunda çok ağır olmadan önce aşağı yönlü akım olur ve bunlar büyük dolular olarak aşağı düşerler. Dolu tanesini yarıya kesmek buzun soğan katmanları gibidir, aşırı soğuk suyun katmanları boyunca geçtiğinde farklı zamanlar gösterir. Dolu tanesi çapı 7 inç (18 cm ) e kadardır [13]

Konvektif kaldırma dağınık hava kütlesi herhangi bir ön taraftan uzak olması durumunda oluşur. Ancak çok ılıman düzensiz hava ön taraf etrafında ve düşük basınç merkezlerinde mevcut olabilir, ön ve konvektif kaldırma faktörlerinden dolayı ağır ve çok aktif konsetrasyonlarda kümüliform ve kümülinimbiform bulutlar sıklıkla üretilir. Önde olmayan konvektif kaldırma ile düzensizliğin artış dikey yukarı bulutların büyümesini destekler ve birçok hava durumu için potansiyel artışıdır. Karşılaştırılan nadir durumlarda, konvektif kaldırma troposfer geçişine nüfuz etmek için yeterince güçlü olabilir ve stratosferin içindeki bulutun üstüne itilebilir. [14]

Orografik kaldırma[değiştir | kaynağı değiştir]

Kaldırmanın üçüncü kaynağı rüzgâr döngüsü kuvveti fiziksel bariyerleri aşar örneğin dağ (orografik kaldırma).[6]Eğer hava genellikle düzenli ise, hiçbir şey merceksi kapak bulutlarından daha çok oluşmaz. Ancak, eğer hava yeterince nemli ve düzensiz olursa, orografik kısa süreli yağmurlar veya gök gürültülü fırtına gözükebilir.[15]

Windy evening twilight enhanced by the Sun's angle, can visually mimic a tornado resulting from orographic lift

Adyabatik olmayan soğutma[değiştir | kaynağı değiştir]

Gerekli kaldırma faktörleri adyabatik soğuma boyuncadır, havanın çiy noktası için en düşük sıcaklığın üç temel mekanizması vardır, bunların hepsi yüzey seviyesinin yanında oluşur ve herhangi bir havanın kaldırması gerekli değildir. İletken, radyasyonal ve buharlaşmalı soğutma yüzey seviyesindeki yoğunlaşmayla sis oluşumuna sebep olur.[16] İletken soğutma yer alır when air from a relatively mild source area comes into contact with a colder surface, as when mild marine air moves across a colder land area. Isıl ışınımın emiliminden dolayı radyasyonal soğuma oluşur,ya hava ya yüzey yada yüzey altında.[17] Gece gökyüzü açık olduğunda bu tip soğutma yaygın olur. Buharlaştırma boyunca havaya nem eklendiğinde soğutmalı buharlaştırma olur, bu kuvvetler yağışlı ampul sıcaklığını soğutmak için hava sıcaklığı için kuvvet uygulanır,veya bazen doyma noktasındadır.[18]

Havaya nem eklenmesi[değiştir | kaynağı değiştir]

Su buharlaştırılmasının beş temel yolu vardır ve bu havaya eklenebilir. Arttırılan buhar içeriği su üstündeki rüzgâr yakınsamasından veya yukarı hareket alanındaki alanının içindeki nemli zeminden kaynaklanabilir .[19] Çökelme veya virga (yeryüzüne ulaşmadan buharlaşan kar veya yağmur şeklindeki yağış) yukarıda artan nemlilik içeriğinden düşer[20] Gündüz sıcaklığı okyanus yüzeyinden su buharlaşmasına sebep olur, su kaynakları veya nemli arazi.[21] Transpirasyon bitkilerden diğer tipik su buharı kökenlerinedir.[22] Son olarak, ılıman suyun üzerinde hareket eden soğuk ve kuru hava daha nemli olacaktır. Gündüz sıcaklığında iken, nemliliğin eklenmesiyle havadaki sıcaklık içeriği ve düzensizliği ve işlemlerin hareketinin kuruluşunu arttırır ve bu bulutun ve sisin oluşumuna sebep olur.[23]

Aşırı Doymuşluk[değiştir | kaynağı değiştir]

Elde edilen hacim sıcaklıkla birlikte buharlaşırken artar ve bir miktar su var olur. Bir miktar su buharı, buhar basıncındaki su seviyesinin düz bir yüzeyinin üzerinde denge durumdaysa buna doymuşluk ve bağıl nem 100% denir. Bu denge durumunda sudan buharlaşan moleküllerin sayısı tekrar su içine yoğunlaşırken eşittir. Eğer bağıl nem 100% den fazla olursa, bu aşırı doymuş olarak adlandırılır . Aşırı doymuşluk yoğunlaşmış çekirdeğin kaybında oluşur, örneğin suyun düz yüzeyi.

Since doymuşluk buhar basıncı sıcaklıkla doğru orantılı, soğuk hava ılıman havada düşük doymuşluk noktasına sahiptir. Bu değerler arasındaki farklılık bulutların oluşumunun temelidir. Soğuk hava doyduğunda, artık aynı miktarda su buharı içermez. Eğer şartlar düzgün ise, aşırı su düşük doyma noktasına ulaşana kadar havanın dışında donacaktır. Diğer olasılık su buhar durumunda kalır, doymuşluk noktasına uzak olmasına rağmen, aşırı doymuşluk oluşur.

Aşırı doymuşluk 1–2% den fazla su olarak nadiren atmosferde gözükür, çünkü bulut çekirdek yoğunluğu genellikle mevcuttur.[24] Aşırı doymuşluğun aşamaları çok yüksekliği temiz havada mümkün ve bulut odasının temelidir. 

Aşırı soğuma[değiştir | kaynağı değiştir]

Su damlacıkları genel olarak sıvı su olarak kalır ve donmaz, hatta 0 °C (32 °F) altında, her mikro damlacığın yüksek yüzey geriliminden dolayı, bu büyük buz kristallerinin genişleyip oluşmasını engeller. Buz çekirdeği aşırı soğuk su dışında yaklaşık −40 °C (−40 °F), derecenin altında olur, bu noktada anlık donma olur.

Çarpışma - Birleşme[değiştir | kaynağı değiştir]

Bir teori bulutlardaki tek damlacığın davranışı nasıl olur u açıklıyor bu da yağmurun oluşumunun çarpışma-birleşme işleme yol açar. Damlacıklar diğerleriyle etkileşime girerek havada asılı kalır, ya da çarpışarak ve teker teker sıçrayarak veya birleşerek büyük damlacıklar oluşturarak olur. Sonuç olarak, yeteri büyüklüğe ulaşan damlacıklar, yağış olarak dünyaya düşer. Çarpışma-birleşme işlemi bulut oluşumunda su damlacıklarının yüksek yüzey gerilimindeki ilişkisi kadar önemli bir etki yapmaz. Buna ek olarak, çarpışma-birleşmenin gerçekleşmesi sürükleyip karıştırmak anlamıyla yakından ilişkilidir. [25]

Bergeron işlemi[değiştir | kaynağı değiştir]

Buz bulutlarının oluşumu içim temel mekanizma Tor Bergeron tarafından keşfedildi. Bergeron işlemi şunu belirtti, suyun doymuş buhar basıncı veya verilen hacim için ne kadar su buharı gerekir, buharın etkileşimine bağlı olarak değişir. Özellikle, doymuş buhar basıncı buzun suya göre doymuş buhar basıncı daha düşüktür. Su buharı su damlacıklarıyla etkileşime girerler ve bu doyurulabilir, 100% bağıl nem, su damlacıklarıyla etkileşime girdiklerinde, fakat eşit miktardaki su buharı buz parçacığıyla etkileşime girerse aşırı doymuş olabilir  .[26] Su buharı denge durumuna dönmeye çalışır, böylece ekstra su buharı parçacığın yüzeyinde buzun içinde yoğunlaşacak. Büyük buz kristallerinin çekirdekleri oluşurken bu buz parçacıkları sona erer. Bu işlem sadece 0 °C (32 °F) ve −40 °C (−40 °F) sıcaklıkları arasında olur. −40 °C (−40 °F) altında, sıvı su anlık çekirdeklenir ve donar. Suyun yüz gerilimi damlacıkların normal donma noktasının altında sıvı kalmasını sağlar. Bu olduğunda , aşırı soğuk sıvı durumda su oluşur. Bergeron işlemi aşırı soğuk sıvı durumdaki suya bağlı ve buz çekirdeğiyle ilişkilidir ve dajha büyük parçacıkları oluşturur. Çok az buz çekirdeği bir miktar SLW ile karşılaştırıldığında , damlacıklar oluşturamazlar. A process whereby scientists seed a cloud with artificial ice nuclei to encourage precipitation is known as cloud seeding. Bu This can help cause precipitation in clouds that otherwise may not rain. Cloud seeding adds excess artificial ice nuclei which shifts the balance so that there are many nuclei compared to the amount of supercooled liquid water. Yetiştirici bulut birçok parçacıktan oluşur, fakat herbiri çok küçüktür. This can be done as a preventative measure for areas that are at risk for hail storms.

Bulut sınıflandırılması[değiştir | kaynağı değiştir]

Clouds are classified according to the height at which they are found, and their shape or appearance.[27] There are five forms based on physical structure and process of formation. Cirriform clouds are high, thin and wispy, and are seen most extensively along the leading edges of organized weather disturbances. Stratiform clouds are non-convective and appear as extensive sheet-like layers, ranging from thin to very thick with considerable vertical development. They are mostly the product of large scale lift of stable air. Unstable free-convective cumuliform clouds are formed mostly into localized heaps. Stratocumuliform clouds of limited convection show a mix of cumuliform and stratiform characteristics which appear in the form of rolls or ripples. Highly convective cumulonimbiform clouds have complex structures often including cirriform tops and stratocumuliform accessory clouds.

These forms are cross-classified by altitude range or étage into ten genus types. All cirriform clouds are classified as high and therefore constitute a single cloud genus cirrus. Stratiform and stratocumuliform clouds in the high étage of the troposphere have the prefix cirro- added to their names yielding the genera cirrostratus and cirrocumulus. Similar clouds found in the middle étage carry the prefix alto- resulting in the genus names altostratus and altocumulus.

Niteliklerin tanımlandırılması[değiştir | kaynağı değiştir]

Buluş[değiştir | kaynağı değiştir]

Parametreler[değiştir | kaynağı değiştir]

Buz örtüsü[değiştir | kaynağı değiştir]

Sıcaklık aralığı buz örtüsü artışını verir ve bu bulut tipine göre tanımlanır:

Düşük yığın bulut ve katman bulut 0 ile -10 °C sıcaklık aralığında buz örtüsü oluşumuna sebep olur.
Orta zemin altokümülüs ve altostratus için , aralık  0 ile -20 °C dır.
Vertical or multi-étage cumulus, cumulonimbus, and nimbostatus, create icing at a range of 0 to -25 °C.
High étage cirrus, cirrocumulus, and cirrostratus generally cause no icing because they are made mostly of ice crystals colder than -25 °C.[28]

Kohezyon ve çözünme[değiştir | kaynağı değiştir]

There are forces throughout the homosphere (which includes the troposphere, stratosphere, and mesosphere) that can impact the structural integrity of a cloud. However, as long as the air remains saturated, the natural force of cohesion that hold the molecules of a substance together acts to keep the cloud from breaking up.[29][30] Dissolution of the cloud can occur when the process of adiabatic cooling ceases and upward lift of the air is replaced by subsidence. This leads to at least some degree of adiabatic warming of the air which can result in the cloud droplets or crystals turning back into invisible water vapor.[31] Stronger forces such as wind shear and downdrafts can impact a cloud, but these are largely confined to the troposphere where nearly all the Earth's weather takes place.[32] Tipik bir kümülüs bulut ağırlığı yaklaşık 500 bin kilo, veya 1.1 million pounds, the weight of 100 elephants.[33]

Ayrıca bakınız[değiştir | kaynağı değiştir]

  • Hurricane dynamics and cloud microphysics

Kaynakçalar[değiştir | kaynağı değiştir]

  1. ^ Middleton, William Edgar Knowles (1966). A history of the theories of rain and other forms of precipitation. Oldbourne. OCLC 12250134. 
  2. ^ Pruppacher, Hans R.; Klett, James D. (1997). Microphysics of clouds and precipitation (2nd bas.). Springer. ISBN 0-7923-4211-9. 
  3. ^ Pouncy, Frances J. (February 2003). "A history of cloud codes and symbols". Weather. 58 (2). ss. 69–80. doi:10.1256/wea.219.02. 
  4. ^ Harvey Wichman (August 4, 1997).
  5. ^ Nave, R. (2013). "Adiabatic Process". gsu.edu. Erişim tarihi: 18 November 2013. 
  6. ^ a b c d Elementary Meteorology Online (2013). "Humidity, Saturation, and Stability". vsc.edu. Erişim tarihi: 18 November 2013. 
  7. ^ Horstmeyer, Steve (2008). "Cloud Drops, Rain Drops". Erişim tarihi: 19 March 2012. 
  8. ^ Elementary Meteorology Online (2013). "Lifting Along Frontal Boundaries". vsc.edu. Erişim tarihi: 20 March 2015. 
  9. ^ "Mackerel sky". Weather Online. Erişim tarihi: 21 November 2013. 
  10. ^ Lee M. Grenci and Jon M. Nese (2001). A World of Weather: Fundamentals of Meteorology: A Text / Laboratory Manual (3 bas.). Kendall/Hunt Publishing Company. ss. 207–212. ISBN 978-0-7872-7716-1. OCLC 51160155. 
  11. ^ Freud, E.; Rosenfeld, D. (2012). "Linear relation between convective cloud drop number concentration and depth for rain initiation". Journal of Geophysical Research. Cilt 117. doi:10.1029/2011JD016457. 
  12. ^ O'Niell, Dan (9 August 1979). "Hail Formation". Alaska Science Forum. 328. 
  13. ^ "Largest Hailstone in U.S. History Found". 2003. 
  14. ^ Long, Michael J.; Hanks, Howard H.; Beebe, Robert G. (June 1965). "TROPOPAUSE PENETRATIONS BY CUMULONIMBUS CLOUDS". Erişim tarihi: 9 November 2014. 
  15. ^ Pidwirny, M. (2006).
  16. ^ Ackerman, p. 109
  17. ^ Glossary of Meteorology (2009). "Radiational cooling". American Meteorological Society. Erişim tarihi: 27 December 2008. 
  18. ^ Fovell, Robert (2004). "Approaches to saturation" (PDF). University of California in Los Angeles. Erişim tarihi: 7 February 2009. 
  19. ^ Pearce, Robert Penrose (2002). Meteorology at the Millennium. Academic Press. s. 66. ISBN 978-0-12-548035-2. 
  20. ^ National Weather Service Office, Spokane, Washington (2009). "Virga and Dry Thunderstorms". National Oceanic and Atmospheric Administration. Erişim tarihi: 2 January 2009. 
  21. ^ Bart van den Hurk and Eleanor Blyth (2008). "Global maps of Local Land-Atmosphere coupling" (PDF). KNMI. Erişim tarihi: 2 January 2009. 
  22. ^ Reiley, H. Edward and Shry, Carroll L. (2002). Introductory horticulture. Cengage Learning. s. 40. ISBN 978-0-7668-1567-4. 
  23. ^ JetStream (2008). "Air Masses". National Weather Service. Erişim tarihi: 2 January 2009. 
  24. ^ Rogers, R.R.; Yau, M.K. (1989). A Short Course in Cloud Physics. International Series in Natural Philosophy. 113 (3rd bas.). Elsevier Science. ISBN 0750632151. 
  25. ^ Lu C., Y. Liu, and S. Niu, 2013: A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds.
  26. ^ Sirvatka, P. "Cloud Physics: The Bergeron Process". College of DuPage Weather Lab. 
  27. ^ Sirvatka, P. "Cloud Physics: Types of Clouds". College of DuPage Weather Lab. 
  28. ^ NOAA/ESRL/GSD Forecast Verification Section (2009). "Verification of WAFS Icing Products" (PDF). Erişim tarihi: 11 November 2014. 
  29. ^ American Heritage Science Dictionary (2010). "cohesion science definition". Erişim tarihi: 25 July 2012. 
  30. ^ "cohesion – Princeton Wordnet dictionary". wordfind.com. 
  31. ^ The Westminster review (1841). attraction cohesive cloud droplets. Baldwin, Cradock, and Joy. 
  32. ^ UCAR Center for Science Education, (Ed.) (2011). "The Troposphere – overview". Erişim tarihi: 15 January 2015. 
  33. ^ http://mentalfloss.com/article/49786/how-much-does-cloud-weigh