Hadwiger–Finsler eşitsizliği

Vikipedi, özgür ansiklopedi

Matematikte Hadwiger–Finsler eşitsizliği, Öklid düzlemindeki üçgen geometrisinin bir sonucudur. Düzlemdeki bir üçgenin kenar uzunlukları , ve ve alanı ile gösterilirse, o zaman

İlgili eşitsizlikler[değiştir | kaynağı değiştir]

  • Weitzenböck eşitsizliği, Hadwiger–Finsler eşitsizliğinin doğrudan bir sonucudur: düzlemdeki bir üçgenin kenar uzunlukları , ve ve alanı ile gösterilirse, o zaman

Weitzenböck eşitsizliği, Heron formülü kullanılarak da kanıtlanabilir; bu yolla, (W) için eşitliğin ancak ve ancak eğer üçgen bir eşkenar üçgen ise, yani için geçerli olduğu görülür.

  • Dörtgen için bir versiyon: , uzunlukları , , , ve alanı ile gösterilen dışbükey bir dörtgen olsun, sonra:[1]
sadece bir kare için eşitlikle sonuçlanır.

Burada;

İspat[değiştir | kaynağı değiştir]

Kosinüs yasasından aşağıdaki ifadeyi elde ederiz:

, ve arasındaki açı olsun. Bu aşağıdaki ifadeye dönüştürülebilir:

olduğundan;

'dir.

ve

olduğunu hatırlarsak, bunları kullanarak aşağıdaki ifadeyi elde edebiliriz;

Bunu üçgenin her kenarı için yaparak ve taraf tarafa toplayarak aşağıdaki ifadeyi elde ederiz:

ve üçgenin diğer açılarıdır. Şimdi, üçgenin açılarının yarısı 'den küçük olduğundan, fonksiyonu dışbükeydir:

Bunu kullanarak aşağıdaki ifadeyi elde ederiz:

Bu da Hadwiger–Finsler eşitsizliğidir.

Tarihçe[değiştir | kaynağı değiştir]

Hadwiger–Finsler eşitsizliğine, Alman ve İsviçreli matematikçi Paul Finsler ile İsviçreli matematikçi Hugo Hadwiger yaptıkları çalışma (Paul Finsler & Hugo Hadwiger 1937) sonrası adını vermiştir, aynı makalede, bir tepe noktasını paylaşan diğer iki kareden türetilen bir kare üzerinde Finsler–Hadwiger teoremini de yayınladılar.

Eşitsizliğin genelleştirilmesi[değiştir | kaynağı değiştir]

1. Eğer , , ve bir dörtgenin dört kenarıysa ve alanı ise, o zaman

'dir.

Eşitlik ancak ve ancak dörtgen bir kare ise doğrudur.

2. Eğer , , ……, n kenarlı şeklin kenar uzunlukları ve alanı ise, o zaman

……'dir.

Eşitlik, ancak ve ancak n-kenarlı şekil eş kenarlı bir n-kenarlı şekil ise doğrudur.

Ayrıca bakınız[değiştir | kaynağı değiştir]

Notlar[değiştir | kaynağı değiştir]

  1. ^ Leonard Mihai Giugiuc, Dao Thanh Oai and Kadir Altintas, An inequality related to the lengths and area of a convex quadrilateral, International Journal of Geometry, Vol. 7 (2018), No. 1, ss. 81-86

Kaynakça[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]

İlave okumalar[değiştir | kaynağı değiştir]

  • Cezar Lupu, Algebraic-Geometric Proofs of the Weitzenbock and Finsler-Hadwiger Inequalities Revisited, Makale
  • D.Ş. Marinescu, M. Monea, M. Opincariu & M. Stroe, (2012), Note on Hadwinger–Finsler’s Inequalites, Journal of Mathematical Inequalities, Volume 6, Number 1 (2012), ss. 57–64, Makale
  • Kouba, Omran. (2017). On certain new refinements of Finsler-Hadwiger inequalities. Journal of Inequalities and Applications. 2017. 10.1186/s13660-017-1356-5. Makale