De Gua teoremi

Vikipedi, özgür ansiklopedi
köşesinde bir dik açıya sahip dört yüzlü

Adını Fransız matematikçi Jean Paul de Gua de Malves'den alan De Gua teoremi, Pisagor teoreminin üç boyutlu bir analojisidir.

Açıklama[değiştir | kaynağı değiştir]

Bir dört yüzlünün dik açılı bir köşesi varsa (bir küpün köşesi gibi), o zaman dik köşenin karşısındaki yüzün alanının karesi, diğer üç yüzün alanlarının karelerinin toplamına eşittir.

Genellemeler[değiştir | kaynağı değiştir]

Pisagor teoremi ve de Gua teoremi dik köşe açılı n-simpleks (n = 2, 3) hakkındaki genel bir teoremin özel durumlardır. Bu da Donald R. Conant ve William A. Beyer'in[1] daha genel bir teoreminin özel bir durumudur ve aşağıdaki gibi ifade edilebilir.

U, 'nin ( olmak üzere) k-boyutlu afin alt uzayının ölçülebilir bir alt kümesi olsun. Tam olarak k elemanlı herhangi bir alt kümesi için, U'nun doğrusal açıklığı üzerine ortogonal izdüşümü olsun, burada ve için standart taban (doğal taban)dır. Sonra,

burada U'nun k-boyutlu hacmi ve toplam k elementli tüm alt kümeler üzerindedir.

De Gua'nın teoremi ve dik köşe açılı n-simpliklere genellemesi (yukarıda), k = n-1 ve U’nun koordinat eksenlerinde köşeleri olan 'de bir (n−1)-simpleks olduğu özel duruma karşılık gelir. Örneğin, n = 3, k = 2 ve U içinde A, B ve C köşeleri sırasıyla , ve eksenlerinde yer alan üçgenidir. 'ün tam olarak 2 elemanlı alt kümeleri , , ve 'dir. Tanım olarak, 'nin -düzleminde ortogonal izdüşümüdür, yani köşeleri O, B ve C olan üçgenidir, burada O ''ün orjinidir. Benzer şekilde, ve olup, Conant-Beyer teoremi aşağıdaki gibi ifade edilir;

bu ise de Gua teoremidir.

De Gua teoreminin dik köşe açılı n-simplekslere genelleştirilmesi de Cayley-Menger determinat formülünün özel bir durumu olarak elde edilebilir.

Tarihçe[değiştir | kaynağı değiştir]

Jean Paul de Gua de Malves (1713-1785), bu teoremi 1783'te yayınladı, ancak aynı zamanda teoremin biraz daha genel bir versiyonu başka bir Fransız matematikçi Charles de Tinseau d'Amondans (1746-1818) tarafından da yayınlandı. Ancak teorem, Johann Faulhaber (1580-1635) ve René Descartes (1596-1650) tarafından çok daha önce biliniyordu.[2]

Teoremin İspatı[değiştir | kaynağı değiştir]

İspat 1[değiştir | kaynağı değiştir]

Bir köşesi dik açılı olan bir dört yüzlü verilsin. Dik açılı köşeye dokunan üç yüzün alanları ve dik açılı köşenin karşısındaki "hipotenüs yüzü" alanı şeklinde etiketlensin, De Gua teoremi aşağıdaki eşitliği ifade etmektedir:

.

Bu ispatta Heron formülünü kullanacağız. Heron formülü, bir üçgenin alanını kenar uzunlukları cinsinden verir. Kenarları ve yarı çevresi olan bir üçgenin alanı aşağıdaki şekilde bulunur:

.

De Gua teoremi bağlamında, dört yüzlünün altı bacağı, ve şeklinde etiketlensin. Burada , dik açılı köşeden çıkan bacaklar ve ise hipotenüs yüzünün üç kenarıdır.

Dik açılı köşeye temas eden üç yüzün alanları sırasıyla;

'dir.

Heron formülünü kullanarak hipotenüs yüzünün alanı aşağıdaki şekilde hesaplanır:

.

Bunu bazı cebirsel işlemlerle aşağıdaki şekilde genişletebiliriz.

.

Şimdi, Pisagor teoremini kullanarak elde edebileceğimiz uzunluklar,

olarak hesaplanır.

Ve böylece terimleri yerine koyup sadeleştirerek aşağıdaki ifadeyi elde ederiz:

ve teorem kanıtlanmış olur.

İspat 2[değiştir | kaynağı değiştir]

OA, OB, OC kenarlarının ilgili uzunlukları a, b, c olsun.

Dört yüzlü tarafından kesilen şeklin iç hacmi, abc/6 = c/3 = b/3 = a/3 aynı zamanda h, ABC yüzü ile ilişkili yüksekliği göstermek üzere h/3 'ye eşittir.

vektörü gibi ABC düzlemine normaldir, bu yükseklik ile gösterilir.

Dolayısıyla, hacimleri eşitleyerek: . Ve basitleştirerek 'ye yani istenen formüle ulaşılır.

Notlar[değiştir | kaynağı değiştir]

  1. ^ Donald R Conant (Mar 1974). "Generalized Pythagorean Theorem". The American Mathematical Monthly. Mathematical Association of America. 81 (3): 262-265. doi:10.2307/2319528. 
  2. ^ Howard Whitley Eves: Great Moments in Mathematics (before 1650).

Kaynakça[değiştir | kaynağı değiştir]

Konuyla ilgili yayınlar[değiştir | kaynağı değiştir]