Taylor serisi
Bu madde hiçbir kaynak içermemektedir. (Haziran 2016) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin) |
Taylor serisi matematikte, bir fonksiyonun, o fonksiyonun terimlerinin tek bir noktadaki türev değerlerinden hesaplanan sonsuz toplamı şeklinde yazılması şeklindeki gösterimi/açılımıdır. Adını İngiliz matematikçi Brook Taylor'dan almıştır. Eğer seri sıfır merkezli ise (), Taylor serisi daha basit bir biçime girer ve bu özel seriye İskoç matematikçi Colin Maclaurin'e istinaden Maclaurin serisi denir. Bir serinin terimlerinden sonlu bir sayı kadarını kullanmak, bu seriyi bir fonksiyona yakınsamak için genel bir yöntemdir. Taylor serisi, Taylor polinomunun limiti olarak da görülebilir.
Tanım
[değiştir | kaynağı değiştir]Her dereceden türevli, gerçel ya da karmaşık bir fonksiyonunun a gerçel ya da karmaşık bir sayı olmak üzere aralığındaki Taylor serisi şu şekilde tanımlanmıştır:
Daha düzenli bir gösterim olan Sigma gösterimiyle ise şu şekilde yazılır:
Burada , n faktöriyeli; ƒ (n)(a) ise f fonksiyonunun n. dereceden türevinin a noktasındaki değerini belirtmektedir. f fonksiyonunun sıfırıncı dereceden türevi f' in kendisiyle tanımlanmıştır ve (x − a)0 ve 0!, 1'e eşit olarak kabul edilmiştir.
Maclaurin serisi
[değiştir | kaynağı değiştir]a=0 özel durumunda seri, Maclaurin serisi olarak adlandırılır:
Örnekler
[değiştir | kaynağı değiştir]Herhangi bir çokterimlinin Maclaurin serisi, kendisidir.
(1 − x)−1 için Maclaurin serisi,
- geometrik serisidir.
x-1 fonksiyonunun a=1 değerindeki Taylor serisi de,
- dir.
Yukarıdaki Maclaurin serisinin integralini alarak −ln(1 − x) fonksiyonunun Maclaurin serisini buluruz: (burada ln doğal logaritmayı ifade eder)
Ve bu seriye ilişkin ln(x) fonksiyonunun a=1 değerindeki Taylor serisi ise,
- dir.
a = 0 noktasında ex üstel fonksiyonu için Taylor serisi:),
- dir.
ex'in x'e göre türevi yine ex 'e ve e0 de 1'e eşit olduğundan yukarıdaki açılım sadeleşir. Bu sadeleşme sonucunda da sonsuz toplamdaki her terimin payında (x − 0)n terimi, paydasındaysa n! terimi kalır.
Yakınsaklık
[değiştir | kaynağı değiştir]Her fonksiyonun Taylor serisi yakınsak olmak zorunda değildir. Yakınsak Taylor serili fonksiyonlar kümesi, bir düz fonksiyonların Frechet uzayında bir eksik kümedir. Bu fonksiyonların dışında, genelde sözü geçen çoğu fonksiyonun Taylor serisi yakınsamaz.
Bir f fonksiyonunun yakınsak Taylor serisinin limiti genelde f(x)'in fonksiyon değerine eşit olmak zorunda olmamasına rağmen pratikte eşittir. Örneğin;
fonksiyonu x=0'da sonsuz türevlidir ve bu noktadaki tüm türevleri sıfırdır.
Analitik fonksiyonlar
[değiştir | kaynağı değiştir]Eğer seri belirtilen aralıktaki her noktasında 'e yakınsıyorsa f(x) analitik bir fonksiyon olarak adlandırılır. Her sonsuz türevlenebilir fonksiyon analitik değildir. Örneğin, f(x) =e −1/x², x ≠ 0 ve fonksiyonunun Taylor serisi sıfıra denktir ancak fonksiyonun kendisi sıfırdan farklıdır.
Kullanım Alanları
[değiştir | kaynağı değiştir]Taylor serileri, fonksiyonların (ör. logaritma) verilen bir noktadaki sayisal değerlerini bulmak için kullanılabilirler. Buna ek olarak, türev ya da integral de işlemleri seriye açılıp daha kolay işlem yapılabilmektedir.
Ayrıca bakınız
[değiştir | kaynağı değiştir]