Catalan sayıları

Vikipedi, özgür ansiklopedi
Şuraya atla: kullan, ara

Katalan sayıları, kombinatorik matematikte birçok problemin çözümünde kullanılabilen özel bir sayı dizisi. Adını Belçikalı matematikçi Eugène Charles Catalan(1814-1894)’dan alan bu dizinin terimleri,

formülüyle bulunur. Alternatif bir formül olan

’in bir doğal sayı olduğunu bir önceki formülden daha açık bir şekilde gösterir.

Katalan sayılarının her biri, kendinden önceki terimlere bağlıdır. Yani : alınır ve diğerleri için

uygulanır.

Hesaplamayı kolaylaştıran bir başka formül ise

'dir.

Örnekler[değiştir | kaynağı değiştir]

1. 3 çift parantez, bir cümle içinde kaç farklı şekilde bulunabilir?

Cevap olacak ve parantezler şu şekillerde kullanılabilecektir:

((()))     ()(())     ()()()     (())()     (()())

2. 3 dallı bir ikili ağaç, kaç farklı şekilde çizilebilir?

Cevap yine ’tir.

Catalan number binary tree example.png

3. 4x4’lük, karelere bölünmüş bir alanda, sol alt köşeden sağ üst köşeye kaç farklı şekilde çıkılabilir?

Catalan number 4x4 grid example.svg

4. Bir altıgen, köşegenler yardımıyla oluşturulmuş üçgenlere kaç farklı şekilde ayrılabilir?

Catalan-Hexagons-example.svg

5. 1’den 4’e kadar olan sayılar, sıralı bir üçlü oluşturmamak kaydıyla kaç farklı şekilde yan yana getirilebilir?

{1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312,4321}

6. 4 basamaklı bir merdiven, 4 karoyla kaç farklı şekilde kaplanabilir?

Catalan stairsteps 4.svg

7. nxn boyutlu bir A matrisinde, her ise, o matrise Hankel matrisi denir ve determinant, boyuttan bağımsız olarak daima 1’dir.

Katalan sayılarının sayma problemlerindeki (Kombinatorik) uygulamaları[değiştir | kaynağı değiştir]

Bu dizinin terimleri, kombinatorik matematiğin problemlerini çözmede fayda sağlar. Yukarıda gördüğümüz örnekler bunlardan bazılarıdır. Farklı başlangıç değerleri için problemin cevabı, başlangıç değerini n yerine yazarak elde edilen Katalan sayısına eşit olur.

 ;

  • n çift parantezin kaç farklı şekilde düzgün konumlanabileceğini, (düzgün konumlanmakla kastedilen, açılan her parantezin kapanması ve bir parantez açılmadan kapatma parantezi konmamasıdır.)
  • n+1 dallı bir ikili ağacın kaç farklı şekilde oluşturulabileceğini,
  • nxn karelik bir alanda, diagonalin üzerine çıkmayacak şekilde, sol alt köşeden sağ üst köşeye kaç farklı şekilde ulaşılabileceğini,
  • n+2 kenarlı bir konveks çokgenin, köşegenler aracılığıyla kaç üçgene bölünebileceğini,
  • 1’den n’e kadar olan sayıların, sıralı üçlü oluşturmamak koşuluyla kaç farklı şekilde dizilebileceğini,
  • n basamaklı bir merdivenin, n tane karoyla kaç farklı şekilde kaplanabileceğini,
  • {1,…,n} kümesinin kesişmeyen kısımlarının sayısını,
  • 2xn boyutlu bir standart Young tablosunun kaç farklı şekilde oluşturulabileceğini,

Ve bunlara benzer sayma problemlerinin nasıl çözülebileceğini gösterir.,

Formülün İspatları[değiştir | kaynağı değiştir]

1.İspat[değiştir | kaynağı değiştir]

Bu ispat, Dyck kelimelerinin(baştan sona doğru nereden bölünürse bölünsün, X’lerin sayısının Y’lerden az olmadığı, X ve Y’den oluşan kelimeler) yazılışına dayanır. Bu durumda , kurala uygun şekilde yazılmış kelimelerin sayısıdır. Bu kurala uygun, c ve c+ ’lardan oluşan, (boş da olabilen) bir kelime oluşturur ve c’yi c=[c1]c2 şeklinde yazarsak, c+ için uygun olan yerlerin toplamı,

b de dengeli, yani eşit sayıda c ve c+ içeren, 2n uzunluğunda bir kelime ve olsun. Yukarıda olduğu gibi, dengeli bir kelime de [c]b ya da ] c+ [b olarak yazılabilir, öylseyse

Yanlış fakat dengeli olan bir kelime de c] ile başlar, dolayısıyla,

Bu eşitlikten ve Bi = di Ci ’den faydalanarak : elde edilir. Katsayılar Cn için verilen ilk formülle karşılaştırılınca di = i + 1 bulunur. O halde,

2.İspat[değiştir | kaynağı değiştir]

Bu ispat da Katalan sayılarının üçgenleme tanımını kullanarak Cn ve Cn+1 arasında bir bağıntı kurmamızı sağlar. n+2 kenarlı bir P çokgeninin bir kenarını temel olarak alalım. P çokgeni üçgenlenebiliyorsa 2n+1 kenarından birini seçip devam edebiliriz. Bu şekilde oluşturulabilecek (4n+2) Cn farklı durum vardır. Bir de n+3 kenarlı bir Q çokgeni verilsin. Yine bir kenarını temel aldığımızda, Q üçgenlenebilir bir çokgense, ilkinden farklı bir kenar daha seçebiliriz. Bu kez oluşturabileceğimiz (n+2) Cn+1 farklı durum vardır. Şimdi bu ikisi arasında bir geçiş yapabiliriz: ya Q çokgenini, bir kenarı işaretli olan bir üçgenini çıkararak küçülteceğiz ya da P’nin işaretli kenarının yerine bir üçgen koyarak P’yi genişletip bir kenarını işaretleyeceğiz. Öyleyse ;

’in binom formülü,: başlangıç koşulu ve bu bağıntı yoluyla doğrudan elde edilebilir.

Dış bağlantılar[değiştir | kaynağı değiştir]

http://www.math.harvard.edu/~mantovan/ADMIN/catalan2.pdf

http://www.geometer.org/mathcircles/catalan.pdf

http://www.math.utah.edu/mathcircle/notes/mladen2.pdf

http://en.wikipedia.org/wiki/Catalan_number