Binom dönüşümü

Vikipedi, özgür ansiklopedi
Şuraya atla: kullan, ara

Tümleşik matematikte binom dönüşümü bir dizinin ileri farklarını hesaplamaya yarayan bir dizi dönüşümüdür. Kavram, binom dönüşümünün Euler dizisine uygulanması sonucu oluşan Euler dönüşümüyle yakından ilintilidir.

Tanım[değiştir | kaynağı değiştir]

Bir dizisinin binom dönüşümü (T)

olarak tanımlanan dizisidir.

yazımında T bir sonsuz boyutlu işleci göstermektedir. Bu işlecin elemanları şu biçimde gösterilebilir:

Bu dönüşüm bir kıvrılmadır.

Bu, farklı bir biçimde de gösterilebilir.

Burada δ Kronecker delta işlevini göstermektedir.

işlemiyle özgün diziye geri dönülebilir.

Bir dizinin binom dönüşümü o dizinin n. ileri farkıdır.

Burada Δ ileri fark işlecini simgelemektedir.

Binom dönüşümü zaman zaman ek bir imle gösterilmektedir. Bu gösterimde dönüşüm

biçiminde ifade edilirken bu ifadenin tersi

olarak yazılır.

Örnek[değiştir | kaynağı değiştir]

Binom dönüşümleri fark tablolarında kolaylıkla gözlenebilmektedir.

0   1   10   63   324   1485
  1   9   53   261   1161
    8   44   208   900
      36   164   692
        128   528
          400

0, 1, 10, 63, 324, 1485, … biçimindeki en üst satır ( tarafından tanımlanan bir dizi) 0, 1, 8, 36, 128, 400, … köşegeninin ( tarafından tanımlanan bir dizi) binom dönüşümüdür.

Değişim durumları[değiştir | kaynağı değiştir]

Binom dönüşümü Bell sayılarının değişim işlecidir. Başka bir deyişle,

eşitliği sağlanmaktadır. Burada Bell sayılarını göstermektedir.

Olağan üretici işlev[değiştir | kaynağı değiştir]

Dönüşüm, diziyle ilişkilendirilmiş üretici işlevleri birbirine bağlamaktadır. Olağan üretici işlev için

ve

eşitliklerinin sağlandığı varsayılsın. Buradan

ifadesine ulaşılabilir.

Euler dönüşümü[değiştir | kaynağı değiştir]

Olağan üretici işlevler arasındaki ilişki zaman zaman Euler dönüşümü olarak adlandırılmaktadır. İki farklı biçimde var olan dönüşüm, almaşık dizilerin yakınsaklığını hızlandırabilmektedir. Başka bir deyişle,

ifadesinde x yerine 1/2 konularak 1'e ulaşılabilir. Sağdaki terimler çok hızlı bir biçimde küçüldüklerinden bu toplam kolaylıkla hesaplanabilir.

Euler dönüşümü şu biçimde genellenbilir:

p = 0, 1, 2, … için

eşitliği sağlanır.

Euler dönüşümü hipergeometrik dizisine sıklıkla uygulanmkatadır. Bu durumda Euler dönüşümü

olarak ifade edilebilmektedir.

Binom dönüşümü ve bunun farklı bir uyarlaması olan Euler dönüşümü bir sayının sürekli kesir olarak ifade edilmesinde büyük önem taşımaktadır. sayısının sürekli kesir ifadesinin

olduğu varsayılsın. Buradan

ve

sonuçlarına ulaşılabilmektedir.

Üstel üretici işlev[değiştir | kaynağı değiştir]

Üstel üretici işlev için

ve

eşitliklerinin sağlandığı varsayılsın. Buradan

eşitliğine ulaşılır.

Borel dönüşümü, olağan üretici işlevi üstel üretici işleve dönüştürebilmektedir.

İntegral biçimindeki ifadesi[değiştir | kaynağı değiştir]

Dizi bir karmaşık çözümleme işleviyle değiştirildiğinde dizinin binom dönüşümü Nörlund-Rice integrali biçiminde ifade edilebilmektedir.

Genellemeler[değiştir | kaynağı değiştir]

Prodinger birimsel benzeri bir dönüşümden söz etmektedir.

eşitliğinin sağlandığı varsayıldığında

ifadesine ulaşılır. Burada U ve B sırasıyla ve dizileriyle ilişkilendirilmiş olağan üretici işlevleri göstermektedir.

Artan k-binom dönüşümü zaman zaman

biçiminde, azalan k-binom dönüşümü

biçiminde tanımlanmaktadır. Her iki dönüşüm de bir dizinin Hankel dönüşümü özüne eşittir.

Binom dönüşümü

olarak tanımlanır, bu ifade

işlevine eşitlenir, yeni bir ileri fark tablosu oluşturulur ve bu tablonun her satırının ilk elemanından gibi yeni bir dizi oluşturulursa özgün dizinin ikinci binom dönüşümü

ifadesine eşit olur.

Aynı işlem k kez yinelendiğinde

eşitliğine ulaşılır. Bu ifadenin tersi

olarak yazılır.

Bu ifadenin genel biçimi

olarak yazılabilir. Burada değişim işlecini göstermektedir.

Bu ifadenin tersi

biçiminde gösterilir.

Ayrıca bakınız[değiştir | kaynağı değiştir]

Kaynakça[değiştir | kaynağı değiştir]

Dış bağlantılar[değiştir | kaynağı değiştir]