Grup temsili
Görünüm
Temsil teorisinin matematiksel alanında grup temsilleri, soyut grupları bir vektör uzayının kendisine göre doğrusal dönüşümleri (yani vektör uzayı otomorfizmleri) cinsinden tanımlar. Özellikle grup elemanlarını tersinir matrisler olarak temsil etmek için kullanılabilirler, böylece grup işlemi matris çarpımı ile temsil edilebilir.
Kimyada grup temsili, matematiksel grup öğelerini simetrik dönüşler ve moleküllerin yansımaları ile ilişkilendirir.
Grupların gösterimleri birçok grup-teorik problemin lineer cebirdeki problemlere indirgenmesine izin vermesi nedeniyle önemlidir. Fizikte de örneğin bir fiziksel sistemin simetri grubunun o sistemi tanımlayan denklemlerin çözümlerini nasıl etkilediğini açıklaması nedeniyle önemlidir.
Kaynakça
[değiştir | kaynağı değiştir]Kaynakça
[değiştir | kaynağı değiştir]- Introduction to representation theory with emphasis on Lie groups.
- Yurii I. Lyubich. Introduction to the Theory of Banach Representations of Groups 19 Haziran 2023 tarihinde Wayback Machine sitesinde arşivlendi.. Translated from the 1985 Russian-language edition (Kharkov, Ukraine). Birkhäuser Verlag. 1988.