Gauss-Legendre Algoritması

Vikipedi, özgür ansiklopedi
Şuraya atla: kullan, ara

Gauss-Legendre Algoritması π sayısının basamaklarını hesaplamak için kullanılan bir algoritmadır. Sadece 25 iterasyonda π sayısının 45 milyon basamağını doğru olarak hesaplıyor.

Bu yöntem Carl Friedrich Gauss (1777-1855) ve Adrien-Marie Legendre (1752-1833) ikilisinin bireysel çalışmalarıyla modern çarpma ve karekök bulma algoritmalarının bir birleşimine dayanmaktadır.

Aşağıda gösterilen çeşidiyse Brent-Salamin(ya da Salamin-Brent) algoritması olarak da bilinir; 1975 yılında Richard Brent ve Eugene Salamin tarafından keşfedilmiştir. Bu algoritma 18-20 Eylül, 1999'da π sayısının ilk 206,158,430,000 ondalık basamaklarını hesaplamakta kullanıldı ve sonuçlar Borwein Algoritması'yla kontrol edildi.

Algoritma[değiştir | kaynağı değiştir]

1. Başlangıç değeri ayarlama:

2. Aşağıdaki talimatları ve 'nin farkı istenen doğruluk seviyesine gelene kadar uygulamaya devam edin.

3.π yaklaşık olarak şu çıkar:

İlk 3 iterasyonun sonucu:

Matematiksel arka plan[değiştir | kaynağı değiştir]

Aritmetik-geometrik ortalamanın sınırları[değiştir | kaynağı değiştir]

İki sayının aritmetik-geometrik ortalaması, a0 ve b0, aşağıdaki dizilerin limitleri alınarak bulunur

Bu iki denklem de aynı limit değerine yakınsar. Eğer ve ise limit değerine yakınsar; öyleki birinci tür tam olmayan eliptik integraldir.

Eğer , ise

öyleki ikinci tür tam olmayan integraldir.

Gauss tüm bu sonuçları biliyordu.[1] [2] [3]

Legendre’ın özdeşliği[değiştir | kaynağı değiştir]

Öyle bir ve sayıları vardır ki eşitliğini sağlar. Legendre bu ödeşliği kanıtlamıştır:

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ Brent, Richard (1975), Traub, J F, ed., "Multiple-precision zero-finding methods and the complexity of elementary function evaluation", Analytic Computational Complexity (New York: Academic Press): 151–176, http://wwwmaths.anu.edu.au/~brent/pub/pub028.html, erişim tarihi: 8 September 2007 
  2. ^ Salamin, Eugene. Computation of pi, Charles Stark Draper Laboratory ISS memo 74–19, 30 January, 1974, Cambridge, Massachusetts
  3. ^ Salamin, Eugene (1976), "Computation of pi Using Arithmetic-Geometric Mean", Mathematics of Computation 30 (135): 565–570, ISSN 0025--5718