Çözülememiş fizik problemleri listesi

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

Fizikte çözülememiş ana problemler teoriktir. Başka bir ifadeyle mevcut teoriler, gözlenmiş bir fenomeni veya deneysel sonucu açıklayamamaktadır. Başkaları deneysel olup önerilmiş bir teorinin doğruluğunu test etmede ya da bir fenomenin daha detaylı incelenmesinde karşılaşılan zorluklardır.

Alt alanlara göre çözülememiş problemler[değiştir | kaynağı değiştir]

Aşağı alt alanlarına göre gruplanmış çözülememiş problemlerin listesi görülmektedir.

Kosmoloji ve genel görelilik[değiştir | kaynağı değiştir]

Evrensel enflasyon
Kosmik enflasyon teorisi doğru mu? Eğer doğruysa bu devrin detayları nelerdir? Enflasyona sebep olan farazî enflasyon alanı nedir? Eğer enflasyon bir noktada olmuşsa sonsuz enflasyon mudur ve akıl almaz uzak bir yere doğru mu gitmektedir?[1]
Ufuk problemi
Uzak Kâinat, Büyük Patlama Teorisi daha büyük anizotropiler haber vermesine rağmen niçin bu derece homojendir? Kosmolojik enflasyon, genelde çözüm olarak görünse de değişken ışık hızı gibi açıklamalar daha uygun mudur?[2]
Evren'in geleceği
Kâinat Büyük Donma'ya (İng. Big Freeze), Büyük Yırtılma'ya (İng. Big Rip), Büyük Çatırtı'ya (İng. Big Crunch) ya da Büyük Sıçrama'ye (İng. Big Bounce) doğru mu gitmektedir? Yahut kendisi sonsuza kadar kendini tekrar eden dönüşsel bir modelin parçası mıdır?
Kütle çekimsel dalga
Kütle çekimsel dalgalar deneysel olarak tespit edilebilir mi?[3][4]
Baryon asimetrisi
Gözlemlenebilir Evren'de niçin madde, antimaddeden çok daha fazladır?
Kozmolojik sabit problemi
Vakumun sıfır noktası enerjisi niçin büyük bir kozmolojik sabite sebep olmuyor? Bilinen düşük değeri sağlayan nedir?
Kâinat'ta kara madde ve kara enerjinin tahmînî dağılımı
Karanlık madde
Kara maddenin kimliği nedir?[2] Bir temel parçacık mıdır? Yoksa en hafif süper ortak mıdır (İng. Lightest Supersymmetric Particle, LSP)? Kara maddeye atfedilen fenomenler, bir madde şekli yerine kütle çekiminin genişlemiş bir türü müdür?
Kara enerji yoğunluğu \rho_{*} ile madde yoğunluğu \rho_m'nun ölçek faktörü a'ya karşı log-log çizimi. İki doğru şimdiki dönemde kesişmektedirler.[5]
Kara enerji
Hızlanan genişlemenin sebebi nedir (de Sitter fazı)? Kara enerji komponentinin enerji yoğunluğu, niçin farklı zamanlarda gelişen maddenin şimdiki yoğunluğu ile aynı büyüklüktedir? Acaba tam vaktinde mi rasat ediyoruz? Kara enerji saf bir kozmolojik sabit midir, yoksa hayalet energy gibi cevher modelleri uygulanabilir mi?
Kara akıntı
Büyük sayıda galaksi kümelerinin Kâinat'ın bir noktasına doğru hareket sebebi nedir?[6]
KMG anisotropisinin eliptik hizalanması
Mikrodalga göğünün 13 milyar ışık yılından daha uzakta bulunan bâzı büyük unsurlar, Güneş Sistemi'nin hem hareketi, hem de duruşuyla hizalanmış gibidirler. Bu durum işlemlerdeki sistematik hatalardan, sonuçların yerel etkilerle "kirlenmesinden" veya Kopernik Prensibi'nin açıklanamamış bir ihlâlinden mi kaynaklanmaktadır?
Kâinat'ın şekli
Birlikte hareket eden uzayın, başka bir ifade ile gayrıresmî olarak "şekil" denen Uzay'ın birlikte hareket eden uzaysal bölümünün 3-katlısı nedir? Bu şeklin ne eğriliği, ne de topolojisi şu ana kadar bilinmektedir. Yalnızca eğriliğin gözlemlenebilir ölçeklerde "neredeyse" sıfır olduğu biliniyor. Kozmik enflasyon hipotezi, Uzay'ın şeklinin ölçülemez olduğunu öne sürerken 2003'ten beri Jean-Pierre Luminet et al. ve başka gruplar, Uzay'ın şeklinin bir Poincaré on iki kenarlı uzay öne sürmektedirler. Acaba Poincaré uzayının şekli mi ölçümlenemez, yoksa başka bir 3-katlı mı?

Quantum kütle çekimi[değiştir | kaynağı değiştir]

Vakum fâciası
Acaba kuvantum vakumunun tahmin edilen kütlesinin Uzay'ın genişlemesi üzerine ancak küçük bir etkisi vardır?
Kuvantum kütle çekimi
Kuvantum mekaniği ve genel relativite, tamamen tutarlı bir teori şekline (muhtemelen bir kuvantum alan teorisi haline) getirilebilir mi?[7] Is spacetime fundamentally continuous or discrete? Would a consistent theory involve a force mediated by a hypothetical graviton, or be a product of a discrete structure of spacetime itself (as in loop quantum gravity)? Are there deviations from the predictions of general relativity at very small or very large scales or in other extreme circumstances that flow from a quantum gravity theory?
Kara delikler, kara delik bilgi paradoksu ve kara delik ışıması
Kara delikler, teorik bazdan beklendiği gibi ısısal ışıma yapar mı? Yaparsa bu ışıma, sicim teorisinin öngördüğü gibi iç yapıları hakkında bilgi içerir veya Hawking'in asıl hesapları doğrultusunda içermez mi? Veyahut ışıma belli bir noktada durup geriye kara delik kalıntıları mı geride bırakır? İç yapılarını - eğer varsa - araştırmanın başka yolu var mıdır?
İlave boyutlar
Tabiatta dört uzayzaman boyutundan başka boyutlar var mıdır? Eğer varsa boyları nedir? Boyutlar, Kâinat'ın temel bir özelliği veya başka fiziksel kanunların sonucunda ortaya çıkan bir sonucu mudur? Deneysel olarak daha fazla uzaysal boyutları "görebilir" miyiz?
The cosmic censorship hypothesis and the chronology protection conjecture
Can singularities not hidden behind an event horizon, known as "naked singularities", arise from realistic initial conditions, or is it possible to prove some version of the "cosmic censorship hypothesis" of Roger Penrose which proposes that this is impossible?[8] Similarly, will the closed timelike curves which arise in some solutions to the equations of general relativity (and which imply the possibility of backwards time travel) be ruled out by a theory of quantum gravity which unites general relativity with quantum mechanics, as suggested by the "chronology protection conjecture" of Stephen Hawking?
Yerellik
Are there non-local phenomena in quantum physics? If they exist, are non-local phenomena limited to the entanglement revealed in the violations of the Bell Inequalities, or can information and conserved quantities also move in a non-local way? Under what circumstances are non-local phenomena observed? What does the existence or absence of non-local phenomena imply about the fundamental structure of spacetime? How does this relate to quantum entanglement? How does this elucidate the proper interpretation of the fundamental nature of quantum physics?

Yüksek enerji fiziği/parçacık fiziği[değiştir | kaynağı değiştir]

A simulation of how a detection of the Higgs particle would appear in the CMS detector at CERN
Higgs mekanizması
Are the branching ratios of the Higgs Boson consistent with the standard model? Is there only one type of Higgs Boson?
Hierarşi problemi
Why is gravity such a weak force? It becomes strong for particles only at the Planck scale, around 1019 GeV, much above the electroweak scale (100 GeV, the energy scale dominating physics at low energies). Why are these scales so different from each other? What prevents quantities at the electroweak scale, such as the Higgs boson mass, from getting quantum corrections on the order of the Planck scale? Is the solution supersymmetry, extra dimensions, or just anthropic fine-tuning?
Manyetik tek kutuplar
Did particles that carry "magnetic charge" exist in some past, higher energy epoch? If so, do any remain today? (Paul Dirac showed the existence of some types of magnetic monopoles would explain charge quantization.[9])
Proton bozunması ve spin krizi
Is the proton fundamentally stable? Or does it decay with a finite lifetime as predicted by some extensions to the standard model?[10] How do the quarks and gluons carry the spin of protons?[11]
Süpersimetri
Is spacetime supersymmetry realized at TeV scale? If so, what is the mechanism of supersymmetry breaking? Does supersymmetry stabilize the electroweak scale, preventing high quantum corrections? Does the lightest supersymmetric particle (LSP) comprise dark matter?
Madde nesilleri
Why are there three generations of quarks and leptons? Is there a theory that can explain the masses of particular quarks and leptons in particular generations from first principles (a theory of Yukawa couplings)?
Elektrozayıf eşbakışım bozulması
What is the mechanism responsible for breaking the electroweak gauge symmetry, giving mass to the W and Z bosons? Is it the simple Higgs mechanism of the Standard Model,[12] or does nature make use of strong dynamics in breaking electroweak symmetry, as proposed by Technicolor?
Nötrino kütlesi
What is the mass of neutrinos, whether they follow Dirac or Majorana statistics? Is mass hierarchy normal or inverted? Is the CP violating phase 0?[13][14][15]
Hapis
Why has there never been measured a free quark or gluon, but only objects that are built out of them, like mesons and baryons? How does this phenomenon emerge from QCD?[kaynak belirtilmeli]
Strong CP problem and axions
Why is the strong nuclear interaction invariant to parity and charge conjugation? Is Peccei–Quinn theory the solution to this problem?

Astronomi ve astrofizik[değiştir | kaynağı değiştir]

Relativistic jet. The environment around the AGN where the relativistic plasma is collimated into jets which escape along the pole of the supermassive black hole
Accretion disc jets
Why do the accretion discs surrounding certain astronomical objects, such as the nuclei of active galaxies, emit relativistic jets along their polar axes?[kaynak belirtilmeli] Why are there quasi-periodic oscillations in many accretion discs?[kaynak belirtilmeli] Why does the period of these oscillations scale as the inverse of the mass of the central object?[kaynak belirtilmeli] Why are there sometimes overtones, and why do these appear at different frequency ratios in different objects?[kaynak belirtilmeli]
Coronal heating problem
Why is the Sun's Corona (atmosphere layer) so much hotter than the Sun's surface? Why is the magnetic reconnection effect many orders of magnitude faster than predicted by standard models?
Diffuse interstellar bands
What is responsible for the numerous interstellar absorption lines detected in astronomical spectra? Are they molecular in origin, and if so which molecules are responsible for them? How do they form?
Gamma ray bursts
How do these short-duration high-intensity bursts originate?[12]
Supermassive black holes
What is the origin of the M-sigma relation between supermassive black hole mass and galaxy velocity dispersion?[16]
Observational anomalies
Rotation curve of a typical spiral galaxy: predicted (A) and observed (B). Can the discrepancy between the curves be attributed to dark matter?
Hipparcos anomaly: What is the actual distance to the Pleiades?[kaynak belirtilmeli]
Kuiper Cliff: Why does the number of objects in the Solar System's Kuiper Belt fall off rapidly and unexpectedly beyond a radius of 50 astronomic units?
Flyby anomaly: Why is the observed energy of satellites flying by Earth sometimes different by a minute amount from the value predicted by theory?
Galaxy rotation problem: Is dark matter responsible for differences in observed and theoretical speed of stars revolving around the center of galaxies, or is it something else?
Supernovae
What is the exact mechanism by which an implosion of a dying star becomes an explosion?
Ultra-high-energy cosmic ray
[2] Why is it that some cosmic rays appear to possess energies that are impossibly high (the so-called OMG particle), given that there are no sufficiently energetic cosmic ray sources near the Earth? Why is it that (apparently) some cosmic rays emitted by distant sources have energies above the Greisen–Zatsepin–Kuzmin limit?[2][12]
Rotation rate of Saturn
Why does the magnetosphere of Saturn exhibit a (slowly changing) periodicity close to that at which the planet's clouds rotate? What is the true rotation rate of Saturn's deep interior?[17]
Origin of magnetar magnetic field
What is the origin of magnetar magnetic field?
Space roar
Why is space roar six times louder than expected? What is the source of space roar?
Age-metallicity relation in the Galactic disk
Is there a universal age-metallicity relation in the Galactic disk?[18][19]

Nükleer fizik[değiştir | kaynağı değiştir]

The "island of stability" in the proton vs. neutron number plot for heavy nuclei
Quantum chromodynamics
What are the phases of strongly interacting matter, and what roles do they play in the cosmos? What is the internal landscape of the nucleons? What does QCD predict for the properties of strongly interacting matter? What governs the transition of quarks and gluons into pions and nucleons? What is the role of gluons and gluon self-interactions in nucleons and nuclei? What determines the key features of QCD, and what is their relation to the nature of gravity and spacetime?
Nuclei and Nuclear astrophysics
What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes? What is the origin of simple patterns in complex nuclei? What is the nature of exotic excitations in nuclei at the frontiers of stability and their role in stellar processes? What is the nature of neutron stars and dense nuclear matter? What is the origin of the elements in the cosmos? What are the nuclear reactions that drive stars and stellar explosions?

Atomsal, moleküler ve optik fiziği[değiştir | kaynağı değiştir]

Hydrogen atom
What is the solution to the Schrödinger equation for the hydrogen atom in arbitrary electric and magnetic fields?[20]

Yoğunlaşmış madde fiziği[değiştir | kaynağı değiştir]

A sample of a cuprate superconductor (specifically BSCCO). The mechanism for superconductivity of these materials is unknown.

High-temperature superconductors

What is the mechanism that causes certain materials to exhibit superconductivity at temperatures much higher than around 25 kelvin?[12]
Amorphous solids
What is the nature of the glass transition between a fluid or regular solid and a glassy phase? What are the physical processes giving rise to the general properties of glasses and the glass transition?[21][22]
Cryogenic electron emission
Why does the electron emission in the absence of light increase as the temperature of a photomultiplier is decreased?[23][24]
Sonoluminescence
What causes the emission of short bursts of light from imploding bubbles in a liquid when excited by sound?[25]Şablon:Update after
Turbulence
Is it possible to make a theoretical model to describe the statistics of a turbulent flow (in particular, its internal structures)?[12] Also, under what conditions do smooth solutions to the Navier–Stokes equations exist? Alfvénic turbulence in the solar wind and the turbulence in solar flares, coronal mass ejections, and magnetospheric substorms are major unsolved problems in space plasma physics.[26]
Topological order
Is topological order stable at non-zero temperature? Equivalently, is it possible to have three-dimensional self-correcting quantum memory?[27]
Fractional Hall effect
What mechanism explains the existence of the \nu=5/2 state in the fractional quantum Hall effect? Does it describe quasiparticles with non-Abelian fractional statistics?[28]
Bose–Einstein condensation
How do we rigorously prove the existence of Bose–Einstein condensates for general interacting systems?[29]
Liquid crystals
Can the nematic to smectic (A) phase transition in liquid crystal states be characterized as a universal phase transition?[30][31]

Biyofizik[değiştir | kaynağı değiştir]

Synaptic plasticity
It is necessary for computational and physical models of the brain, but what causes it, and what role does it play in higher-order processing outside the hippocampus and visual cortex?
Axon guidance
How do axons branching out from neurons find their targets? This process is crucial to nervous system development, allowing the building up of the brain.
Stochasticity and robustness to noise in gene expression
How do genes govern our body, withstanding different external pressures and internal stochasticity? Certain models exist for genetic processes, but we are far from understanding the whole picture, in particular in development where gene expression must be tightly regulated.
Quantitative study of the immune system
What are the quantitative properties of immune responses? What are the basic building blocks of immune system networks? What roles are played by stochasticity?
Homochirality
What is the origin of the preponderance of specific enantiomers in biochemical systems?

Başka problemler[değiştir | kaynağı değiştir]

Entropy (arrow of time)
Why did the universe have such low entropy in the past, resulting in the distinction between past and future and the second law of thermodynamics?[12] Why are CP violations observed in certain weak force decays, but not elsewhere? Are CP violations somehow a product of the Second Law of Thermodynamics, or are they a separate arrow of time? Are there exceptions to the principle of causality? Is there a single possible past? Is the present moment physically distinct from the past and future or is it merely an emergent property of consciousness?
Quantum mechanics in the correspondence limit (sometimes called Quantum chaos)
Is there a preferred interpretation of quantum mechanics? How does the quantum description of reality, which includes elements such as the superposition of states and wavefunction collapse or quantum decoherence, give rise to the reality we perceive? Another way of stating this is the Measurement problem – what constitutes a "measurement" which causes the wave function to collapse into a definite state?
Physical information
Are there physical phenomena, such as black holes or wave function collapse, which irrevocably destroy information about their prior states?
Theory of everything ("Grand Unification Theory")
Is there a theory which explains the values of all fundamental physical constants?[12] Is there a theory which explains why the gauge groups of the standard model are as they are, why observed space-time has 3 spatial dimensions and 1 dimension of time, and why all laws of physics are as they are? Do "fundamental physical constants" vary over time? Are any of the particles in the standard model of particle physics actually composite particles too tightly bound to observe as such at current experimental energies? Are there fundamental particles that have not yet been observed and if so which ones are they and what are their properties? Are there unobserved fundamental forces implied by a theory that explains other unsolved problems in physics?
Yang–Mills theory
Given an arbitrary compact gauge group, does a non-trivial quantum Yang–Mills theory with a finite mass gap exist? This problem is also listed as one of the Millennium Prize Problems in mathematics.
Quantum Computation
Is David Deutsch's notion of a universal quantum computer sufficient to efficiently simulate an arbitrary physical system?[32]
Dimensionless physical constant
At the present time, the values of the dimensionless physical constants cannot be calculated; they are determined only by physical measurement.[33]

Son onyıllarda çözülmüş problemler[değiştir | kaynağı değiştir]

Pioneer anomaly (2012)
There was a deviation in the predicted accelerations of the Pioneer spacecraft as they left the Solar System.[2][12] It is believed that this is a result of previously unaccounted-for thermal recoil force.[34][35]
Long-duration gamma ray bursts (2003)
Long-duration bursts are associated with the deaths of massive stars in a specific kind of supernova-like event commonly referred to as a collapsar. However, there are also long-duration GRBs that show evidence against an associated supernova, such as the Swift event GRB 060614.
Solar neutrino problem (2002)
Solved by a new understanding of neutrino physics, requiring a modification of the Standard Model of particle physics—specifically, neutrino oscillation.
Age Crisis (1990s)
The estimated age of the universe was around 3 to 8 billion years younger than estimates of the ages of the oldest stars in our galaxy. Better estimates for the distances to the stars, and the recognition of the accelerating expansion of the universe, reconciled the age estimates.
Quasars (1980s)
The nature of quasars was not understood for decades.[36] They are now accepted as a type of active galaxy where the enormous energy output results from matter falling into a massive black hole in the center of the galaxy.[37]

Kaynaklar[değiştir | kaynağı değiştir]

  1. ^ Podolsky, Dmitry. "Top ten open problems in physics". NEQNET. http://www.nonequilibrium.net/225-top-ten-open-problems-physics/. Erişim tarihi: 23 April 2012. 
  2. ^ a b c d e Brooks, Michael (March 19, 2005). "13 Things That Do Not Make Sense". New Scientist. Issue 2491. http://www.newscientist.com/article/mg18524911.600-13-things-that-do-not-make-sense.html. Erişim tarihi: March 7, 2011. 
  3. ^ National Research Council (1986). Gravitation, Cosmology, and Cosmic-Ray Physics. Washington, D. C.: National Academies Press. ISBN 0-309-03579-1. http://books.google.com/books?id=Hk1wj61PlocC&pg=PA36&lpg=PA36&dq=gravitational+wave+unsolved+problem+in+physics&source=bl&ots=lrSHduMokm&sig=YjcrUELaKtBLXb-HaCUwhLeK7UU&hl=en&sa=X&ei=ubiET5OGH-KQiQLcuuT1BA&ved=0CEQQ6AEwBA#v=onepage&q=unsolved&f=false. 
  4. ^ Paulson, Tom (May 27, 2002). "Catching a cosmic wave of gravity". Seattle Post-Intelligencer. http://www.seattlepi.com/news/article/Catching-a-cosmic-wave-of-gravity-1088160.php#page-2. Erişim tarihi: 10 April 2012. 
  5. ^ Steinardt, Paul (1997), "Cosmological Challenges For the 21st Century", Val Fitch et al., Critical problems in physics: proceedings of a conference celebrating the 250th anniversary of Princeton University, Princeton, New Jersey: Princeton University Press, ss. 138–140, ISBN 978-0-691-05784-2 
  6. ^ "Dark Flow" Discovered at Edge of the Universe: Hundreds of Millions of Stars Racing Towards a Cosmic Hotspot. Dailygalaxy.com (2009-08-26). Retrieved on 2011-10-20.
  7. ^ Alan Sokal (July 22, 1996), "Don't Pull the String Yet on Superstring Theory", New York Times, http://query.nytimes.com/gst/fullpage.html?res=9D0DE7DB1639F931A15754C0A960958260 
  8. ^ Joshi, Pankaj S. (January 2009), "Do Naked Singularities Break the Rules of Physics?", Scientific American, http://www.sciam.com/article.cfm?id=naked-singularities 
  9. ^ Dirac, Paul, "Quantised Singularities in the Electromagnetic Field". Proceedings of the Royal Society A 133, 60 (1931).
  10. ^ Li, Tianjun; Dimitri V. Nanopoulos, Joel W. Walker (2011). "Elements of F-ast Proton Decay". ArXiv. http://arxiv.org/pdf/1003.2570.pdf. Erişim tarihi: 14 April 2012. 
  11. ^ Hansson, Johan (2010). "The "Proton Spin Crisis" — a Quantum Query". Progress in Physics 3. http://www.ptep-online.com/index_files/2010/PP-22-08.PDF. Erişim tarihi: 14 April 2012. 
  12. ^ a b c d e f g h Baez, John C. (March 2006). "Open Questions in Physics". Usenet Physics FAQ. University of California, Riverside: Department of Mathematics. http://math.ucr.edu/home/baez/physics/General/open_questions.html. Erişim tarihi: March 7, 2011. 
  13. ^ "India-based Neutrino Observatory (INO)". Tata Institute of Fundamental Research. http://www.ino.tifr.res.in/ino/. Erişim tarihi: 14 April 2012. 
  14. ^ Christianto, Vic; Florentin Smarandache (2007). "Thirty Unsolved Problems in the Physics of Elementary Particles". Progress in Physics 4. http://www.ptep-online.com/index_files/2007/PP-11-16.PDF. 
  15. ^ Nakamura; et al. (Particle Data Group) (2010). "2011 Review of Particle Physics". J. Phys. G 37: 075021. Bibcode 2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7A/075021. http://pdg.lbl.gov/2011/reviews/contents_sports.html. 
  16. ^ Ferrarese, Laura; Merritt, David (2000), "A Fundamental Relation between Supermassive Black Holes and their Host Galaxies", The Astrophysical Journal 539: L9–L12, arXiv:astro-ph/0006053, Bibcode 2000ApJ...539L...9F, doi:10.1086/312838, http://adsabs.harvard.edu/abs/2000ApJ...539L...9F 
  17. ^ "Scientists Find That Saturn's Rotation Period is a Puzzle". NASA. June 28, 2004. http://www.nasa.gov/mission_pages/cassini/media/cassini-062804.html. Erişim tarihi: 2007-03-22. 
  18. ^ Gilmore, G.; Asiri, H.M. (00/2011). "Open Issues in the Evolution of the Galactic Disks". Workshop on Gaia. Proceedings. Granada, ed. Navarro et al. 2011. http://adsabs.harvard.edu/abs/2011sca..conf..280G. Erişim tarihi: 2013-09-08. 
  19. ^ Feltzing, S.; Holmberg, J.; Hurley, J.R. (10/2001). "The solar neighbourhood age-metallicity relation - Does it exist?". A&A. http://adsabs.harvard.edu/abs/2011sca..conf..280G. Erişim tarihi: 2013-09-08. 
  20. ^ Panel on Atomic, Molecular, and Optical Physics, Physics Survey Committee, Board on Physics and Astronomy, National Research Council (1986). Atomic, Molecular, and Optical Physics. National Academies Press. ss. 63. ISBN 9780309594561. http://www.nap.edu/openbook.php?record_id=627&page=63. 
  21. ^ Kenneth Chang (July 29, 2008), "The Nature of Glass Remains Anything but Clear", The New York Times, http://www.nytimes.com/2008/07/29/science/29glass.html 
  22. ^ P.W. Anderson (1995), "Through the Glass Lightly", Science 267: 1615, doi:10.1126/science.267.5204.1615-e, "The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition." 
  23. ^ Cryogenic electron emission phenomenon has no known physics explanation. Physorg.com. Retrieved on 2011-10-20.
  24. ^ DOI:10.1209/0295-5075/89/58001
  25. ^ Proceedings: Mathematical, physical, and engineering sciences (Royal Society) 453, 1997, "An unsolved problem in modern physics concerns the phenomenon of sonoluminescence" 
  26. ^ Goldstein, Melvyn L. (2001). "Major Unsolved Problems in Space Plasma Physics". Astrophysics and Space Science 277 (1/2): 349–369. Bibcode 2001Ap&SS.277..349G. doi:10.1023/A:1012264131485. 
  27. ^ Yoshida, Beni (2011). "Feasibility of self-correcting quantum memory and thermal stability of topological order". Annals of Physics 326 (10). arXiv:1103.1885. Bibcode 2011AnPhy.326.2566Y. doi:10.1016/j.aop.2011.06.001. http://www.sciencedirect.com/science/article/pii/S0003491611001023. Erişim tarihi: 8 April 2012. 
  28. ^ Podolsky, Dmitry. "Quantum Hall effect. One open question". NEQNET. http://www.nonequilibrium.net/203-quantum-hall-effect-open-question/. Erişim tarihi: 23 April 2012. 
  29. ^ Schlein, Benjamin. "Graduate Seminar on Partial Differential Equations in the Sciences - Energy and Dynamics of Boson Systems". Hausdorff Center for Mathematics. http://www.hcm.uni-bonn.de/homepages/prof-dr-benjamin-schlein/teaching/graduate-seminar-on-pdes-in-the-sciences/. Erişim tarihi: 23 April 2012. 
  30. ^ Mukherjee, Prabir K. (1998). "Landau Theory of Nematic-Smectic-A Transition in a Liquid Crystal Mixture". Molecular Crystals & Liquid Crystals 312: 157–164. doi:10.1080/10587259808042438. http://www.tandfonline.com/doi/pdf/10.1080/10587259808042438. Erişim tarihi: 28 April 2012. 
  31. ^ A. Yethiraj, "Recent Experimental Developments at the Nematic to Smectic-A Liquid Crystal Phase Transition", Thermotropic Liquid Crystals: Recent Advances, ed. A. Ramamoorthy, Springer 2007, chapter 8.
  32. ^ Nielson, Micheal; Chuang, Isaac (2004). http://www.squint.org/qci/QINFO-book-nielsen-and-chuang-toc-and-chapter1-nov00.pdf. Cambridge University Press. ISBN 978-0-521-63503-5. http://www.squint.org/qci/QINFO-book-nielsen-and-chuang-toc-and-chapter1-nov00.pdf. 
  33. ^ "Alcohol constrains Physical Constant in the Early Universe". Max-Planck-Institut für Radioastronomie. December 2012. http://www3.mpifr-bonn.mpg.de/public/pr/pr-methanol-dec2012-en.html. Erişim tarihi: December 15, 2012. 
  34. ^ DOI:10.1103/PhysRevLett.108.241101
    Bu alıntı, sonraki birkaç dakika içinde otomatik olarak tamamlanacaktır. Siz de kuyruğun önüne geçebilir ya da elle açıklayabilirsiniz
  35. ^ http://www.nytimes.com/2012/07/24/science/mystery-tug-on-pioneer-10-and-11-probes-is-einsteins-i-told-you-so.html?
  36. ^ "The MKI and the discovery of Quasars". Jodrell Bank Observatory. http://www.jb.man.ac.uk/public/story/mk1quasars.html. Erişim tarihi: 2006-11-23. 
  37. ^ Hubble Surveys the "Homes" of Quasars Hubblesite News Archive, 1996-35

Dış bağlantılar[değiştir | kaynağı değiştir]