Yardım:Matematiksel formüller

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

MediaWiki yazılımı matematiksel ifadelerin biçimlendirilmesinde LaTeX ve AMSLaTeX yazılımlarını içeren TeX yazılımını kullanmaktadır. Bazı matematiksel formüller kişisel tercihlere bağlı olarak PNG, bazıları ise HTML olarak gözükebilir.


Kodlama[değiştir | kaynağı değiştir]

Matematiksel kodlar <math> ... </math> kodları arasına yazılır. Math markup goes inside <math> ... </math>. The edit toolbar has a button for this.


Tex kodları doğru yazılmadıkları zaman hata uyarısı verirler. Bu nedenle kodları doğru yazdığınızdan emin olmalısınız.


Sunum[değiştir | kaynağı değiştir]

It should be pointed out that most of these shortcomings have been addressed by Maynard Handley, but have not been released yet.

The alt attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <math> and </math>.

Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \mbox or \mathrm. For example, <math>\mbox{abc}</math> gives \mbox{abc}.

TeX ve HTML[değiştir | kaynağı değiştir]

Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see Help:Special characters).

TeX kodlaması TeX çıktısı HTML kodlaması HTML çıktısı
<math>\alpha\,</math> \alpha\, &alpha; α
<math>\sqrt{2}</math> \sqrt{2} &radic;2 √2
<math>\sqrt{1-e^2}</math> \sqrt{1-e^2} &radic;<span style="text-decoration: overline;">1&minus;''e''&sup2;</div> 1−e²


as follows.

HTML'nin avantajları[değiştir | kaynağı değiştir]

  1. HTML ile yazılan formüller her zaman yazının bütünü gibi durur.
  2. HTML ile yazılan formüllerde, sayfanın arka planı, font türü, internet sunucusunun ayarları aktif olarak çalışır.
  3. HTML kullanarak yazılan formüller sayfa açılım hızını arttırır.


TeX kullanımının avantajları[değiştir | kaynağı değiştir]

  1. Tex kalite bakımından HTML'den ileri bir yazılımdır.
  2. Tex yazılımında "<math>x</math>" kodlaması matematiksel değişken anlamına gelir. Fakat HTML'de "x" kodlaması herhangi bir anlama gelebilir. Bu yüzden bilgiler daha kolay kaybolabilir.
  3. TeX yazılımı özellikle formül yazımı için tasarlanmıştır. Bu nedenle daha kolay ve daha işlevseldir.
  4. One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to help improve the situation.
  5. Diğer önemli husus TeX MathML kodlamasına, bu kodlamayı destekleyen sunucular tarafından çevirlebilmektedir.
  6. TeX komutlarını kullanırken sunucu desteğine ya da diğer teknik desteklere ihtiyaç duymazsınız. Bu kodlamanın işlevselliğini serverler sağlamaktadır. Bu nedenle her türlü sunucuda, rahatlıkla yazıp kullanabileceğiniz bir kodlama türüdür.

Fonksiyonlar, semboller, özel karakterler[değiştir | kaynağı değiştir]

Aksanlar/Vurgular

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!
\check{a} \bar{a} \ddot{a} \dot{a} \check{a} \bar{a} \ddot{a} \dot{a}\,\!

Standart fonksiyonlar

\sin a \cos b \tan c \sin a \cos b \tan c\,\!
\sec d \csc e \cot f \sec d \csc e \cot f\,\!
\arcsin h \arccos i \arctan j \arcsin h \arccos i \arctan j\,\!
\sinh k \cosh l \tanh m \coth n \sinh k \cosh l \tanh m \coth n\,\!
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q \operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t \operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!
\lim u \limsup v \liminf w \min x \max y \lim u \limsup v \liminf w \min x \max y\,\!
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!

Modüler aritmatik

s_k \equiv 0 \pmod{m} a \bmod b s_k \equiv 0 \pmod{m} a \bmod b\,\!

Türevsel karakterler

\nabla \partial x dx \dot x \ddot y \nabla \partial x dx \dot x \ddot y\,\!

Kümeler

\forall \exists \empty \emptyset \varnothing \forall \exists \empty \emptyset \varnothing\,\!
\in \ni \not \in \notin \subset \subseteq \supset \supseteq \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!

Operatör işaretler

+ \oplus \bigoplus \pm \mp - + \oplus \bigoplus \pm \mp - \,\!
\times \otimes \bigotimes \cdot \circ \bullet \bigodot \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!
\star * / \div \frac{1}{2} \star * / \div \frac{1}{2}\,\!

Mantıksal ifadeler

\land \wedge \bigwedge \bar{q} \to p \land \wedge \bigwedge \bar{q} \to p\,\!
\lor \vee \bigvee \lnot \neg q \And \lor \vee \bigvee \lnot \neg q \And\,\!

Kök alma

\sqrt{2} \sqrt[n]{x} \sqrt{2} \sqrt[n]{x}\,\!

Eşitlik/Denklik/Benzerlik işaretleri

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} \sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!

Geometrik

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!

Oklar/Bildiri ifadeleri

\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow \mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow \curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!
\nLeftrightarrow \longleftrightarrow \nLeftrightarrow \longleftrightarrow\,\!

Özel

\eth \S \P \% \dagger \ddagger \ldots \cdots \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!
\smile \frown \wr \triangleleft \triangleright \infty \bot \top \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit \ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!

Unsorted (new stuff)

\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown  \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge  \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes  \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant  \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq  \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft  \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot  \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq  \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork  \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq  \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid  \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr  \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq  \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq  \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq  \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!
\dashv \asymp \doteq \parallel \dashv \asymp \doteq \parallel\,\!

Üslü ifadeler, toplam-çarpım sembolleri, türev, integral[değiştir | kaynağı değiştir]

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 a^2 a^2 \,\!
Subscript a_2 a_2 a_2 \,\!
Grouping a^{2+2} a^{2+2} a^{2+2}\,\!
a_{i,j} a_{i,j} a_{i,j}\,\!
Combining sub & super x_2^3 x_2^3
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b \sideset{_1^2}{_3^4}\prod_a^b
{}_1^2\!\Omega_3^4 {}_1^2\!\Omega_3^4
Stacking \overset{\alpha}{\omega} \overset{\alpha}{\omega}
\underset{\alpha}{\omega} \underset{\alpha}{\omega}
\overset{\alpha}{\underset{\gamma}{\omega}} \overset{\alpha}{\underset{\gamma}{\omega}}
\stackrel{\alpha}{\omega} \stackrel{\alpha}{\omega}
Derivative (forced PNG) x', y, f', f\!   x', y'', f', f''\!
Derivative (f in italics may overlap primes in HTML) x', y, f', f x', y'', f', f'' x', y'', f', f''\!
Derivative (HTML-yanlış) x^\prime, y^{\prime\prime} x^\prime, y^{\prime\prime} x^\prime, y^{\prime\prime}\,\!
Derivative (PNG-yanlış) x\prime, y\prime\prime x\prime, y\prime\prime x\prime, y\prime\prime\,\!
Derivative dots \dot{x}, \ddot{x} \dot{x}, \ddot{x}
Underlines, overlines, vectors \hat a \ \bar b \ \vec c \hat a \ \bar b \ \vec c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
\overline{g h i} \ \underline{j k l} \overline{g h i} \ \underline{j k l}
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C  A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} \overbrace{ 1+2+\cdots+100 }^{5050}
Underbraces \underbrace{ a+b+\cdots+z }_{26} \underbrace{ a+b+\cdots+z }_{26}
Sum \sum_{k=1}^N k^2 \sum_{k=1}^N k^2
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 \textstyle \sum_{k=1}^N k^2
Product \prod_{i=1}^N x_i \prod_{i=1}^N x_i
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i \textstyle \prod_{i=1}^N x_i
Coproduct \coprod_{i=1}^N x_i \coprod_{i=1}^N x_i
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i \textstyle \coprod_{i=1}^N x_i
Limit \lim_{n \to \infty}x_n \lim_{n \to \infty}x_n
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n \textstyle \lim_{n \to \infty}x_n
Integral \int_{-N}^{N} e^x\, dx \int_{-N}^{N} e^x\, dx
İntegral (force \textstyle) \textstyle \int_{-N}^{N} e^x\, dx \textstyle \int_{-N}^{N} e^x\, dx
Çift katlı integral \iint_{D}^{W} \, dx\,dy \iint_{D}^{W} \, dx\,dy
Üç katlı integral \iiint_{E}^{V} \, dx\,dy\,dz \iiint_{E}^{V} \, dx\,dy\,dz
Dört katlı integral \iiiint_{F}^{U} \, dx\,dy\,dz\,dt \iiiint_{F}^{U} \, dx\,dy\,dz\,dt
Path integral \oint_{C} x^3\, dx + 4y^2\, dy \oint_{C} x^3\, dx + 4y^2\, dy
Intersections \bigcap_1^{n} p \bigcap_1^{n} p
Unions \bigcup_1^{k} p \bigcup_1^{k} p

Fractions, matrices, multilines[değiştir | kaynağı değiştir]

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 \frac{2}{4}=0.5
Small Fractions \tfrac{2}{4} = 0.5 \tfrac{2}{4} = 0.5
Large (normal) Fractions \dfrac{2}{4} = 0.5 \dfrac{2}{4} = 0.5
Large (nestled) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
Binomial coefficients \binom{n}{k} \binom{n}{k}
Small Binomial coefficients \tbinom{n}{k} \tbinom{n}{k}
Large (normal) Binomial coefficients \dbinom{n}{k} \dbinom{n}{k}
Matrices
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
\begin{matrix} x & y \\ z & v
\end{matrix}
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
\begin{vmatrix} x & y \\ z & v
\end{vmatrix}
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
\begin{Vmatrix} x & y \\ z & v
\end{Vmatrix}
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots &
0\end{bmatrix}
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
\begin{Bmatrix} x & y \\ z & v
\end{Bmatrix}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
\begin{pmatrix} x & y \\ z & v
\end{pmatrix}
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)

\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
Case distinctions
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n) = 
\begin{cases}
  n/2,  & \mbox{if }n\mbox{ is even} \\ 
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}

\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}

\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
Multiline equations (more)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
Breaking up a long expression so that it wraps when necessary

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f(x) \,\!= \sum_{n=0}^\infty a_n x^n = a_0 +a_1x+a_2x^2+\cdots

Simultaneous equations
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}

Alphabets and typefaces[değiştir | kaynağı değiştir]

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!
\Eta \Theta \Iota \Kappa \Lambda \Mu \Eta \Theta \Iota \Kappa \Lambda \Mu \,\!
\Nu \Xi \Pi \Rho \Sigma \Tau \Nu \Xi \Pi \Rho \Sigma \Tau\,\!
\Upsilon \Phi \Chi \Psi \Omega \Upsilon \Phi \Chi \Psi \Omega \,\!
\alpha \beta \gamma \delta \epsilon \zeta \alpha \beta \gamma \delta \epsilon \zeta \,\!
\eta \theta \iota \kappa \lambda \mu \eta \theta \iota \kappa \lambda \mu \,\!
\nu \xi \pi \rho \sigma \tau \nu \xi \pi \rho \sigma \tau \,\!
\upsilon \phi \chi \psi \omega \upsilon \phi \chi \psi \omega \,\!
\varepsilon \digamma \vartheta \varkappa \varepsilon \digamma \vartheta \varkappa \,\!
\varpi \varrho \varsigma \varphi \varpi \varrho \varsigma \varphi\,\!
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!
Hebrew
\aleph \beth \gimel \daleth \aleph \beth \gimel \daleth\,\!
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} \mbox{abc} \mbox{abc} \,\!
mixed italics (bad) \mbox{if} n \mbox{is even} \mbox{if} n \mbox{is even} \mbox{if} n \mbox{is even} \,\!
mixed italics (good) \mbox{if }n\mbox{ is even} \mbox{if }n\mbox{ is even} \mbox{if }n\mbox{ is even} \,\!
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} \mbox{if}~n\ \mbox{is even} \mbox{if}~n\ \mbox{is even} \,\!

Parenthesizing big expressions, brackets, bars[değiştir | kaynağı değiştir]

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) ( \frac{1}{2} )
Good \left ( \frac{1}{2} \right ) \left ( \frac{1}{2} \right )

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) \left ( \frac{a}{b} \right )
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
Angle brackets \left \langle \frac{a}{b} \right \rangle \left \langle \frac{a}{b} \right \rangle
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
Slashes and backslashes \left / \frac{a}{b} \right \backslash \left / \frac{a}{b} \right \backslash
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow

Delimiters can be mixed,
as long as \left and \right match

\left [ 0,1 \right )
\left \langle \psi \right |

\left [ 0,1 \right )
\left \langle \psi \right |

Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X \left . \frac{A}{B} \right \} \to X
Size of the delimiters \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| \big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

Spacing[değiştir | kaynağı değiştir]

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b a \qquad b
quad space a \quad b a \quad b
text space a\ b a\ b
text space without PNG conversion a \mbox{ } b a \mbox{ } b
large space a\;b a\;b
medium space a\>b [not supported]
small space a\,b a\,b
no space ab ab\,
small negative space a\!b a\!b

Align with normal text flow[değiştir | kaynağı değiştir]

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like \int_{-N}^{N} e^x\, dx = 2 \sinh N should look good.

If you need to align it otherwise, use <font style="vertical-align:-100%;"><math>...</math></font> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

Forced PNG rendering[değiştir | kaynağı değiştir]

To force the formula to render as PNG, add \, (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).

You can also use \,\! (small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,.

This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} a^{c+2}
a^{c+2} \, a^{c+2} \,
a^{\,\!c+2} a^{\,\!c+2}
a^{b^{c+2}} a^{b^{c+2}} (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, a^{b^{c+2}} \, (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 a^{b^{c+2}}\approx 5 (due to "\approx" correctly displayed, no code "\,\!" needed)
a^{b^{\,\!c+2}} a^{b^{\,\!c+2}}
\int_{-N}^{N} e^x\, dx \int_{-N}^{N} e^x\, dx


This has been tested with most of the formulae on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

<!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->

Color[değiştir | kaynağı değiştir]

Equations can use color:

  • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}

See here for all named colours supported by LaTeX.

Note that color should not be used as the only way to identify something because color blind people may not be able to distinguish between the two colors. See.

Examples[değiştir | kaynağı değiştir]

Quadratic Polynomial[değiştir | kaynağı değiştir]

ax^2 + bx + c = 0
<math>ax^2 + bx + c = 0</math>

Quadratic Polynomial (Force PNG Rendering)[değiştir | kaynağı değiştir]

ax^2 + bx + c = 0\,\!

<math>ax^2 + bx + c = 0\,\!</math>

Quadratic Formula[değiştir | kaynağı değiştir]

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

Tall Parentheses and Fractions[değiştir | kaynağı değiştir]

2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)

<math>2 = \left(
 \frac{\left(3-x\right) \times 2}{3-x}
 \right)</math>
S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}

<math>S_{new} = S_{old} +
 \frac{ \left( 5-T \right) ^2} {2}</math>

Integrals[değiştir | kaynağı değiştir]

\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy

<math>\int_a^x \int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</math>

Summation[değiştir | kaynağı değiştir]

\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</math>

Differential Equation[değiştir | kaynağı değiştir]

u'' + p(x)u' + q(x)u=f(x),\quad x>a

<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>

Complex numbers[değiştir | kaynağı değiştir]

|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)

<math>|\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</math>

Limits[değiştir | kaynağı değiştir]

\lim_{z\rightarrow z_0} f(z)=f(z_0)

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

Integral Equation[değiştir | kaynağı değiştir]

\phi_n(\kappa)
 = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR

<math>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

Example[değiştir | kaynağı değiştir]

\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}

<math>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

Continuation and cases[değiştir | kaynağı değiştir]

f(x) = \begin{cases}1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases}

<math>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & 0 < x\le 1
 \end{cases}
 </math>

Prefixed subscript[değiştir | kaynağı değiştir]

{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}

 <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}
 \frac{z^n}{n!}</math>

Bug reports[değiştir | kaynağı değiştir]

Discussions, bug reports and feature requests should go to the Wikitech-l mailing list. These can also be filed on Mediazilla under MediaWiki extensions.

See also[değiştir | kaynağı değiştir]

External links[değiştir | kaynağı değiştir]