Ters kare kanunu

Vikipedi, özgür ansiklopedi
(Ters kare yasası sayfasından yönlendirildi)
Atla: kullan, ara
çizgiler kaynaktan çıkan akışı temsil eder. Akış çizgilerinin toplam sayısı kaynağın kuvvetine dayanır ve artan uzaklıkla sabittir. Akış çizgilerinin (birim alana düşen çizgi) büyük yoğunluğu güçlü alan anlamına gelir. Akış çizgilerinin yoğunluğu ters olarak kaynaktan gelen uzaklığın karesiyle oranlıdır çünkü kürenin yüzey alanı yarıçapın karesiyle artar.Bu yüzden, alanın kuvveti ters olarak kaynaktan gelen uzaklığın karesiyle orantılıdır.

Fizikte, ters kare kanunu belirli bir fiziksel miktar veya şiddeti o fiziksel büyüklüğün kaynağından uzaklığın karesiyle ters orantı olduğunu belirten herhangi bir fiziksel kanundur. Denklem şekli:

\mbox{Intensity} \ \propto \ \frac{1}{\mbox{distance}^2} \,

Radyal ters kare yasasının alanlarının bir ya da daha fazla kaynaklara bağlı sonucu olan bir vektör alanının sapması her yerde yerel kaynakların gücüne orantılıdır , ve bundan dolayı sıfır kaynakların dışındadır. Newton’un evrensel yerçekimi yasası ters kare yasasını izler, elektrik, manyetik, ışık, ses ve radyasyon olaylarının etkilerinin yaptığı gibi.

Savunma[değiştir | kaynağı değiştir]

Ters kare kanunu genelde bazı kuvvet, enerji, ya da diğer korunmuş nicelikler aynı oranda üç boyutlu uzayda bir [[nokta kaynaktan dışarıya doğru [[yayıldığı zaman başvurur. Bir kürenin yüzey alanı (4πr2  olan) yarıçapın karesiyle orantılı olduğundan, yayılan radyasyon kaynaktan uzaklaşır, o kaynaktan olan uzaklığın karesiyle oranlı olarak artan bir alana yayılır. Bundan dolayı, (doğrudan nokta kaynağına bakan) herhangi bir birim alandan geçen radyasyonun şiddeti nokta kaynağından olan uzaklığın karesiyle ters olarak orantılıdır. Gauss’un kanunu uygulanır, ve ters kare ilişki için uyum içinde hareket eden herhangi bir fiziksel büyüklük ile kullanılabilir.


Oluşum[değiştir | kaynağı değiştir]

Yer Çekimi[değiştir | kaynağı değiştir]

Yerçekimi kütleye sahip iki nesnenin etkileşimidir.

İki nokta kütlenin arasındaki yer çekimsel etkileşim kuvveti direk olarak onların kütlelerinin çarpımıyla ve onların ayırma mesafesiyle ters orantılıdır. Kuvvet her zaman çekicidir ve onların merkezinden onları birleştiren çizgi boyunca hareket eder. eğer her vücuttaki maddenin dağılımı küre biçiminde simetrik ise, sonra nesneler tahmin olmadan nokta kütleler olarak bahsedilebilir, kabuk teorem de gösterildiği gibi.

Aksi takdirde, eğer biz büyük vücutlar arasında etkileşimi hesaplamak isterse, tüm nokta-nokta etkileşim kuvvetleri vektörel olarak eklemek zorundayız ve net etkileşim kesin ters kare olmayabilir. Fakat, eğer büyük vücutlar arasındaki ayrılık onların boyutuna kıyasla daha genişse, sonra iyi bir yaklaşım için, yer çekimi kuvvetini hesaplarken bu kütleler nokta kütle olarak davranması makuldür. Yer çekimi yasası olarak, 1645 de Ismael Bullialdus tarafından bu yasa önerildi, fakat Bullialdus Kepler’in ikinci ve üçüncü yasalarını kabul etmedi, ne de o dairesel hareket için Christiaan Huygen’in çözümünü takdir etmedi (düz bir çizgide hareket merkezi kuvvet tarafından kenara çekti). Doğrusunu söylemek gerekirse, Bullialdus güneşin kuvvetini savunması en uzak noktada ilgi çekiciydi ve günberi de iticiydi. Robert Hooke ve Giovanni Alfonso Borelli ikiside 1666 da yer çekimini çekici kuvvet olarak açıkladı (Hooke’un dersi ‘’çekimde’’ Kraliyet Cemiyetinde, Londra, 21 Mart’ta; Borelli’nin ‘’Gezegenlerin Teorisi’’ 1666 da sonra yayınlandı) . Hooke’un 1670 Gresham dersinde yer çekimi ‘’tüm gökle ilgili vücutlar’’ başvurduğunu açıkladı ve yer çekimiyle hareket etme gücü mesafe ile azalması ve böyle güç vücutlarının yokluğunda düz çizgide hareket etmesi kurallarını ekledi. 1679 yılında, Hooke yer çekimi ters kare ilişkisine sahip olduğunu düşündü ve [[Isaac Newton’a bir mektupta bunu iletti. Newton'un Principia Hooke, Wren ve Halley ile birlikte, ayrı ayrı güneş sistemindeki ters kare kanunu takdir ettiğini kabul etmesine rağmen, hem de Bullialdus bazı kredi vererek, Hooke bu prensipin icadını iddia eden Newton hakkında üzücü devam ettirdi.

Elektrostatik[değiştir | kaynağı değiştir]

İki elektrik gücüyle yüklü parçacıklar arasındaki etkileşim ya da geri tepme, direk olarak elektrik yüklerinin çarpımının doğru orantılı olmasına ek olarak, aralarındaki uzaklığın karesi ile ters orantılıdır; bu Coulomb’un yasası olarak bilinir.2 den katsayının sapması 1015 içinde bir kısımdan azdır.

Işık ve Başka Elektromanyetik Radyasyon[değiştir | kaynağı değiştir]

Işığın ya da bir nokta kaynaktan (kaynağa dik olan alanın birimi başına düşen enerji) yayılan diğer doğrusal dalgalar yoğunluğu (ya da aydınlığı ya da ışıması) kaynaktan olan uzaklığın karesine ters orantılıdır; bu yüzden, bir nesne (aynı büyüklükte) iki kat daha uzun bir süre tek bir çeyrek enerjiyi (aynı zaman dilimi içinde) alır.

Daha genel olarak, parlaklık , örneğin; bir küresel dalga öncülünün yoğunluğu (ya da yayılma yönünde birim alan başına gücü), (emilimi veya dağılmayla kaynaklanan herhangi bir kayıp olduğu varsayılmaktadır) kaynağından uzaklığın karesi ile ters orantılı olarak değişir.

Örneğin; Güneş’ten gelen radyasyonun yoğunluğu Merkür’ün (0.387 AU) uzaklığındaki metre kare başına düşen 9126 wattır; fakat sadece Dünya’nın (1 AU) uzaklığındaki metre kare başına düşen 1367 watt uzaklıkta yaklaşık 3 kat artış radyasyon yoğunda yaklaşık 9 kat azalışa neden olur.

Eş yönlü olmayan ışıyıcılar için örneğin parabolik antenler, farlar ve lazerler etkin başlangıç noktası uzak kiriş açıklığı arkasında bulunur. Eğer başlangıç noktasına yakınsanız, yarıçapı iki katına gitmek zorunda değilsiniz, bu yüzden sinyal hızla düşer. Başlangıç noktasından uzak olduğun zaman ve halen güçlü yeni bir sinyale sahip olduğun zaman, bir lazer ile birlikte gibi, yarıçapın iki katı kadar uzağa gitmek ve sinyali azaltmak zorundasınız. Bu güçlü sinyale sahip olmak zorunda olduğunuza ya da eş yönlü anten her yönde geniş bir kirişe nisbetle dar ışın yönünde anten kazancı olduğu anlamına gelir.

Fotoğrafçılıkta ve tiyatro aydınlatmada, ters kare kanunu ‘’düşmek’’ ya da bir konu üzerinde aydınlatma farkı ışık kaynağından daha yakın ya da daha fazla hareket ettikçe belirlemek için kullanılır. Çabuk yaklaşımlar için, çift kat olan uzaklık aydınlığı dörtte birine kadar azalttığını hatırlamak yeterlidir; ya da bunun gibi, 1.4’ün (2’nin karekökü) faktörü ile aydınlığın uzaklığı attırtması için, ve aydınlığı iki katına çıkartmak için, uzaklığı 0.7’ye (1/2’nin karekökü) azaltır. Aydınlatıcı bir nokta kaynağında olmadığında, ters kare kanunu hala sık sık yararlı bir yaklaşımdır¸ışık kaynağının büyüklüğü konuya uzaklığın 5’te 1’inden az olduğunda, hesaplama hatası 1% ‘den azdır.

Dolaylı bir nokta kaynaktan artan uzaklık ile birlikte iyonize radyasyon, elektromanyetik akıcılıkta (Φ) küçük azalma ters kare kanunu kullanılarak hesaplanabilir. Çünkü bir nokta kaynaktan emisyonlar radyal yönlere sahip, onlar dik raslantı da kesişir. Böyle bir kabuğun alanı 4πr 2 (r merkezden olan radyal uzaklıktır) ‘dir. Kaynak boyutları uzaklıktan çok daha küçük olmazsa bu orantılı olarak pratik durumlarda tutmamasına rağmen ,bu kanun özellikle tanı radyografi ve radyoterapi tedavi planlamasında önemlidir.

Örnek[değiştir | kaynağı değiştir]

Mesela bir nokta kaynaktan yayılan toplam güç, örneğin; bir çok yönlü izotropik anten, P olsun. Bir kaynaktan (kaynağın büyüklüğüyle karşılaştırılan) büyük uzaklıklarda, kaynaktan uzaklık arttıkça bu güç çok çok büyük küresel yüzeylere dağıtılır. R yarıçaplı kürenin yüzey alanı A= 4πr 2 ‘dir, sonra r uzaklıkta radyasyonun yoğunluğu I (birim alana düşen güç)


I = \frac{P}{A} = \frac{P}{4 \pi r^2}. \,



Yoğunluk ya da enerji (4’e bölündüğünde) azalır çünkü r çift katlıdır; dB’de ölçüldüğünde, bu uzaklığın iki katına 6.02 d B düşecektir.

Akustikler[değiştir | kaynağı değiştir]

Akustik bir çoğunlukla 1/r yasasını kullanarak kaynaktan verilen bir uzaklıkta (r) ses basıncını ölçer. Yoğunluğu basınç genliği karesiyle doğru orantılı olduğundan, bu ters kare kanununda sadece bir varyasyondur.

Örnek[değiştir | kaynağı değiştir]

Akustikte, uzaklık r iki katına çıktıkça nokta kaynaktan yayılan küresel dalga cephesinin ses basıncı 50% azalır; d B’de ölçüldüğünde, azalma hala 6.02 d B’dir, çünkü d B yoğunluk oranını temsil eder. Bu davranış ters kare kanunu değildir, fakat ters oranlıdır (ters uzaklık kanunu).


 p \ \propto \ \frac{1}{r} \, 

Bu parçacık hızının bileşeni için geçerlidir, bu anlık ses basıncı ile eş evrelidir.


 v \ \propto \frac{1}{r} \ \, 



Yakın alanında ses basıcıyla faz dışında 90 ° olan parçacık hızının bir kareleme bileşenidir ve zaman ortalaması alınmış enerjiye ya da sesin yoğunluğuna katkıda bulunmaz. Ses yoğunluğu RMS ses basıncı ve RMS parçacık hızının eş evreli bileşeninin çarpımıdır, onların ikisi de ters orantılıdır. Dolayısıyla, yoğunluk ters kare davranışını takip eder.

 I \ = \ p v \ \propto \ \frac{1}{r^2}. \,


Alan Teorisi Yorumlama[değiştir | kaynağı değiştir]

3 boyutlu uzayda bir irrasyonel vektör alanı için ters kare yasası sapmanın kaynak dışında sıfır olan özelliğine denk gelir. Bu daha yüksek boyutlara genellenebilir. Genelde, n boyutlu Euclidean uzayında irrasyonel vektör alanı için, vektör alanının yoğunluğu ‘’ I ’’ ters (n − 1)th güç yasası takibi ardından uzaklık ‘’ r ‘’azalır.


I\propto \frac{1}{r^{n-1}},


Kaynak dışındaki uzayın serbest sapma olduğu verilmiştir.

Tarih[değiştir | kaynağı değiştir]

14. yüzyılın Oxford hesaplayıcılarından John Dumbleton grafik formunda fonksiyonel ilişkileri açıklayan ilklerden biridir. O, ‘’bir düzgün difform hareketin enlem ortalama derecesine karşılığını’’ belirten teoremin kanıtını verdi ve onun aydınlatmanın yoğunluğunun doğrusal olarak uzaklığa oranlı olmadığını, fakat ters kare kanununu açığa çıkaramadığını belirten Summa logicæ et philosophiæ naturalis (ca. 1349) de aydınlatmanın yoğunluğundaki sayısal azalışı çalışmak için bu metodu kullandı.


Onun Ad Vitellionem paralipomena, quibus astronamiæ pars optica traditur (1604)1. Kitabının 9. Önermesinde, gökbilimci Johannes Kepler nokta kaynaktan çıkan ışığın yayılımının ters kare kanununa uyup uymadığını tartıştı.


ORJİNAL:

Sicut se habent spharicae superificies, quibus origo lucis pro centro est, amplior ad angustiorem: ita se habet fortitudo seu densitas lucis radiorum in angustiori, ad illamin in laxiori sphaerica, hoc est, conversim. Nam per 6. 7. tantundem lucis est in angustiori sphaerica superficie, quantum in fusiore, tanto ergo illie stipatior & densior quam hic.


ÇEVİRİ:

Işığın kaynağının merkez olduğu küresel yüzeyler (oranı) daha genişten dara doğru iken, bu yüzden dar yüzeyde ışık ışınlarının yoğunluğu ya da dayanıklılığı, daha geniş olan küresel yüzeylere doğrudur, yani ters olarak. 6 & 7 önermelerine göre, dar küresel yüzeyde daha fazla ışık vardır, daha geniş olana göre, bu yüzden buradaki yoğunluk ve sıkıştırılma oradakinden çok daha fazladır.


1645 de onun Astronomia Philolaica … kitabında, Fransız gökbilimci Ismael Bullialdus (1605-1694) Johannes Kepler’in ‘’ yerçekimi’’ uzaklığın tersi ile zayıfladığı önerisini reddetti; onun yerine Bullialdus ‘’yerçekimi’’ uzaklığın karesinin tersiyle zayıfladığını tartıştı.


ORJİNAL:


Virtus autem illa, qua Sol prehendit seu harpagat planetas, corporalis quae ipsi pro manibus est, lineis rectis in omnem mundi amplitudinem emissa quasi species solis cum illius corpore rotatur: cum ergo sit corporalis imminuitur, & extenuatur in maiori spatio & intervallo, ratio autem huius imminutionis eadem est, ac luminus, in ratione nempe dupla intervallorum, sed eversa

ÇEVİRİ:

Güneş gezegenleri zapteder ya da yakalar bir güçle, ve maddesel olma, ellerin şeklinde fonksiyonlar, dünyanın bütün genişliği boyunca diz çizgiler olarak yayılır, ve güneşin türleri gibi, bu güneşin gövdesiyle döner; şimdi, onun maddesel olduğunu görme, o daha güçsüz ve daha büyük uzaklıkta ya da aralıkta azalmış olur ve onun gücündeki bu azalma oranının ışık durumundakiyle aynıdır, yani, eş oranda, fakat ters olarak uzaklığın karesiyle (yani 1/d2).





İngiltere de, İngiliz kilisesinin piskoposu Seth Ward (1617-1689) onun eleştrisinde ‘’In Ismaealis Bullialdi astronomiae philolaicae fundamenta inquisitio brevis (1653)’’ Bullialdus’un fikirlerini ve onun Astronomia geometrica (1656) kitabında Kepler’in gezegen astronomisini halka ilan etti.

1663-1664 de, İngiliz bilimadamı Robert Hooke onun Micro graphia (1666) içinde, başka şeyler arasında, atmosferin ve yüzeydeki barometrik basıncın yüksekliğinin arasındaki ilişkinin tartışıldığı kitabını yazıyordu. Dünyanın yüzeyinin herhangi bir birim alanında etkisi olan atmosferin hacmi kesik (dünyanın merkezinden uzay boşluğuna genişleyen; açıkçası dünyanın yüzeyinde sadece dünyanın yüzeyinden uzay ayılarına kadar koninin bölümü) bir konidir, çünkü atmosfer küre olan dünyayı çevreler. Koninin hacmi onun uzunluğunun küpüne doğru orantılı olmasına rağmen, Hooke dünyanın yüzeyinde havanın basıncı atmosferin yüksekliği yerine doğru orantılı olmasını tartıştı, çünkü yerçekimi yükseklikle azalır. Hooke açık bir şekilde bunu belirtmemesine rağmen, onun önerdiği ilişki eğer sadece yerçekimi dünyanın merkezinden uzaklığın ters karesiyle azalırsa doğru olabilecekti.

Ayrıca Bakınız[değiştir | kaynağı değiştir]

Referanslar[değiştir | kaynağı değiştir]

Şablon:FS1037C

Diğer Linkler[değiştir | kaynağı değiştir]

Şablon:Use dmy dates