Logaritma

Vikipedi, özgür ansiklopedi
Atla: kullan, ara
İkilik logaritmanın grafiği. Eğri (2,1), (4,2) ve (8,3) noktalarından geçer. y ekseniyle hiçbir zaman kesişmez.)

Logaritma, üstel işlevlerin tersi olan bir matematiksel işlevdir. Örneğin 1000'in 10 tabanına göre logaritması 3'tür çünkü 1000, 10'un 3. kuvvetidir,1000 = 10 × 10 × 10 = 103.

Daha genel bir ifadeyle

x=b^y \Leftrightarrow log_b(x)=y

Tabanın 10 olması durumunda işlev, onluk logaritma ya da genel logaritma olarak adlandırılır. Onluk logaritmanın fen ve mühendislikte pek çok kullanım alanı vardır. Taban e sayısı olursa buna doğal logaritma denir. Doğal logaritma, soyut matematikte çok sık kullanılır. Bir diğer logaritma şekli de ikilik logaritmadır, bilgisayar biliminde önemli bir yere sahiptir.

Logaritma 17. yüzyılın başında John Napier tarafından hesaplamaları kolaylaştırmak için oluşturuldu. Denizciler, bilim insanları, mühendisler ve daha hızlı hesap yapmak isteyen kişiler tarafından hızlıca benimsenen logaritma, hesap cetvelleri ve logaritma tabloları aracılığıyla kullanılabiliyordu. Uzun zaman alan çok basamaklı çarpma işlemleri logaritmanın şu özelliği sayesinde oldukça kolaylaştı:

 \log_b(xy) = \log_b (x) + \log_b (y). \,

Logaritmanın bugünkü yazım şekli 18. yüzyıla dayanır. Leonhard Euler logaritmanın üstel işlevlerle olan ilişkisini keşfetmiş ve bugünkü yazımı oluşturmuştur.

Gerekliliği ve tanımı[değiştir | kaynağı değiştir]

Logaritma, üstel işlevlerin tersinin hesaplanmasına duyulan ihtiyaç sonucu ortaya çıkmıştır. Örneğin 2'nin kübü 8'dir. Burada 3'ü ifade etmek için logaritmaya ihtiyaç vardır. log2 8 = 3.

Tarihi[değiştir | kaynağı değiştir]

Logaritma üzerinde önemli çalışmaları olan bir Türk bilgini de Gelenbevi İsmail Efendi'dir. Kendisi büyük bir matematikçi olup, mantıkla da uğraşmıştır. 1730-1790 yıllarında yaşayan bu büyük alimin Logaritma Risalesi isimli çok açık, anlaşılır yazılmış bir eseri mevcuttur. Bu risaledeki metinler, bilim insanlarına hesap yapabilen bir cihaz tasarlama fikrini vermiştir.İsmail Efendinin bilim dünyasına bu açıdan bakıldığında büyük katkıları olduğu açıkça farkedilmektedir. Logaritmanın Türkiye'ye gelişine ve uygulanışına dair en detaylı bilgileri veren bilimsel bir makalede [1] bu konu bilim tarihi bakımından ve Salih Murat Üzdilek'in hatıralarıyla beraber açıklanmakta ve Türkiye'de logaritma konusunda ilk çalışmanın Halifezade İsmail Efendi tarafından 1765 yılında yayınlanan Tuhfe-i Behic-i Rasini Tercüme-i Zic-i Kasini adlı yazma tercüme eser olduğu ve logaritmanın Türkiye'ye Batı'dan J. Cassini üzerinden yapılma tercümeyle geldiğini kabul etmek gerektiği gösterilmektedir.

Logaritmik özellikler[değiştir | kaynağı değiştir]

Logaritma: log10 (sarı),
ln (kırmızı) ve log½ (mavi)

Çarpma, bölme, üs ve kök[değiştir | kaynağı değiştir]

Özellik Örnek
çarpma  \log_b(x y) = \log_b (x) + \log_b (y) \,  \log_3 (243) = \log_3(9 \cdot 27) = \log_3 (9) + \log_3 (27) = 2 + 3 = 5 \,
bölme \log_b \!\left(\frac x y \right) = \log_b (x) - \log_b (y) \,  \log_2 (16) = \log_2 \!\left ( \frac{64}{4} \right ) = \log_2 (64) - \log_2 (4) = 6 - 2 = 4
üs \log_b(x^p) = p \log_b (x) \,  \log_2 (64) = \log_2 (2^6) = 6 \log_2 (2) = 6 \,
kök \log_b \sqrt[p]{x} = \frac {\log_b (x)} p \,  \log_{10} \sqrt{1000} = \frac{1}{2}\log_{10} 1000 = \frac{3}{2} = 1.5

Taban değiştirme[değiştir | kaynağı değiştir]

 \log_b(x) = \frac{\log_k(x)}{\log_k(b)}.\,

Hesap makineleri istenen logaritma değerini hesaplamak için şu formülü kullanır:

 \log_b (x) = \frac{\log_{10} (x)}{\log_{10} (b)} = \frac{\log_{e} (x)}{\log_{e} (b)}. \,

Özel tabanlar[değiştir | kaynağı değiştir]

Yaygın olarak kullanılan üç tane taban vardır.

Taban İsim logb(x) ISO gösterimi Diğer gösterimler Kullanıldığı alanlar
2 ikilik logaritma lb(x) ld(x), log(x), lg(x), log2(x) bilgisayar bilimi, bilgi kuramı, matematik, müzik kuramı
e doğal logaritma ln(x) matematiksel inceleme, fizik, kimya,
istatistik, ekonomi
10 adi logaritma lg(x) log(x)
(mühendislik, biyoloji, astronomi), log10(x)
çeşitli mühendislik alanları (bkz. desibel),
logaritma tabloları, hesap makinesi, spektroskopi

Kaynaklar[değiştir | kaynağı değiştir]