Lie cebiri demeti

Vikipedi, özgür ansiklopedi
Şuraya atla: kullan, ara

Matematikte, bir zayıf Lie cebri demeti

bir vektör demeti bir X uzay tabanı üzerinde bir morfizmle beraber

Bu her lif üzerindeki bir Lie cebiri yapısını uyarır.

Bir Lie cebiri demeti içindeki bir vektör demeti bunun her lifi bir Lie cebiridir ve X içindeki her x için , burada x içeren bir açık küme dur, bir Lie cebiri L ve bir homomorfizm

böylece

bir Lie cebiri izomorfizmidir.

Herhangi Lie cebiri demeti bir zayıf Lie cebiri demetidir ama genel içinde tersi doğru olması gerekmez.

toplam uzayı düşünüldüğünde zayıf bir Lie cebiri demetinin bir örneği olarak bu bir sert Lie cebiri demeti değildir üzerinde gerçek hattır.Diyelimki ün Lie braketi [.,.] ifadesi ve gerçek parametre olarak onun deformesi:

için

ve dir.

Lie'nin üçüncü teoremi durumunda bu Lie cebirinin her demeti Lie gruplarının bir demetine yerel entegre olabilir.Ancak küresel toplam uzay Hausdorff için başarısız olabilir.[1]

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ A. Weinstein, A.C. da Silva: Geometric models for noncommutative algebras, 1999 Berkley LNM, online readable at [1], in particular chapter 16.3.
  • A.Douady et M.Lazard, Espaces fibres en algebre de Lie et en groups, Invent. math., Vol. 1, 1966, pp. 133–151
  • B.S.Kiranagi, Lie Algebra bundles, Bull. Sci. Math., 2e serie, 102(1978), 57-62.
  • B.S.Kiranagi, Semi simple Lie algebra bundles, Bull. Math de la Sci. Math de la R.S.de Roumaine, 27 (75), 1983, 253-257.
  • B.S.Kiranagi and G.Prema, On complete reducibility of Module Bundles, Bull. Austral. Math Soc., 28 (1983), 401-409.
  • B.S.Kiranagi and G.Prema, Cohomology of Lie algebra bundles and its applications, Ind. J. Pure and Appli. Math. 16(7): 1985, 731/735.
  • B.S.Kiranagi and G.Prema, Lie algebra bundles defined by Jordan algebra bundles, Bull. Math. Soc.Sci.Math.Rep.Soc. Roum., Noun. Ser. 33 (81), 1989, 255-264.
  • B.S.Kiranagi and G.Prema, On complete reducibility of Bimodule bundles, Bull. Math. Soc. Sci.Math. Repose; Roum, Nouv.Ser. 33 (81), 1989, 249-255.
  • B.S.Kiranagi and G.Prema, A decomposition theorem of Lie algebra Bundles, Communications in Algebra 18 (6), 1990, 1869-1877 .
  • B.S.Kiranagi, G.Prema and C.Chidambara, Rigidity theorem for Lie algebra Bundles, Communications in Algebra 20 (6), 1992, pp. 1549 – 1556.

Ayrıca bakınız[değiştir | kaynağı değiştir]