Vikipedi, özgür ansiklopedi
Laguerre polinomları , matematik 'te adını Edmond Laguerre 'den (1834 – 1886) almıştır. Kanonik (benzer) adlandırma Laguerre denklemi 'dir:
x
y
″
+
(
1
−
x
)
y
′
+
n
y
=
0
{\displaystyle x\,y''+(1-x)\,y'+n\,y=0\,}
İkinci mertebeden bir lineer diferansiyel denklem 'dir. Bu denklemin tekil olmayan çözümleri yalnızca n negatif olmayan tam sayı ise vardır. Laguerre polinomlarının sayısal integral hesaplaması için Gaussian dördünü kullanılan formudur
∫
0
∞
f
(
x
)
e
−
x
d
x
.
{\displaystyle \int _{0}^{\infty }f(x)e^{-x}\,dx.}
L 0 , L 1 , ..., şeklindeki bu polinomları, tanımlayabilmek için Rodrigues formülü tarafından polinomal dizi kullanılmalıdır
L
n
(
x
)
=
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
)
.
{\displaystyle L_{n}(x)={\frac {e^{x}}{n!}}{\frac {d^{n}}{dx^{n}}}\left(e^{-x}x^{n}\right).}
Diğer önemli her bir iç çarpım ortogonal polinomlar tarafından verilir.
⟨
f
,
g
⟩
=
∫
0
∞
f
(
x
)
g
(
x
)
e
−
x
d
x
.
{\displaystyle \langle f,g\rangle =\int _{0}^{\infty }f(x)g(x)e^{-x}\,dx.}
Laguerre polinomlarının dizisi bir Sheffer dizisi 'dir.
Laguerre polinomları kuantum mekaniği 'nde tek-elektronlu atomun (Hidrojen atomu ) Schrödinger denklemi 'nin radyal kısmının çözümlemesinde ortaya çıkar.
Laguerre polinomları için Fizikte sıklıkla kullanılan bir tanım, n !, gibi bir faktör tarafından burada kullanılan tanımdır.
İlk birkaç Laguerre polinomları:
n
L
n
(
x
)
{\displaystyle L_{n}(x)\,}
0
1
{\displaystyle 1\,}
1
−
x
+
1
{\displaystyle -x+1\,}
2
1
2
(
x
2
−
4
x
+
2
)
{\displaystyle {\scriptstyle {\frac {1}{2}}}(x^{2}-4x+2)\,}
3
1
6
(
−
x
3
+
9
x
2
−
18
x
+
6
)
{\displaystyle {\scriptstyle {\frac {1}{6}}}(-x^{3}+9x^{2}-18x+6)\,}
4
1
24
(
x
4
−
16
x
3
+
72
x
2
−
96
x
+
24
)
{\displaystyle {\scriptstyle {\frac {1}{24}}}(x^{4}-16x^{3}+72x^{2}-96x+24)\,}
5
1
120
(
−
x
5
+
25
x
4
−
200
x
3
+
600
x
2
−
600
x
+
120
)
{\displaystyle {\scriptstyle {\frac {1}{120}}}(-x^{5}+25x^{4}-200x^{3}+600x^{2}-600x+120)\,}
6
1
720
(
x
6
−
36
x
5
+
450
x
4
−
2400
x
3
+
5400
x
2
−
4320
x
+
720
)
{\displaystyle {\scriptstyle {\frac {1}{720}}}(x^{6}-36x^{5}+450x^{4}-2400x^{3}+5400x^{2}-4320x+720)\,}
ilk altı Laguerre polinomu.
Tümevarımsal olarak Laguerre polinomları' nın tanımını yapabiliriz, tanımdaki ilk iki polinom:
L
0
(
x
)
=
1
{\displaystyle L_{0}(x)=1\,}
L
1
(
x
)
=
1
−
x
{\displaystyle L_{1}(x)=1-x\,}
ve izleyen polinomlar için özyineleme ile k ≥ 1 'i kullanabiliriz:
L
k
+
1
(
x
)
=
1
k
+
1
(
(
2
k
+
1
−
x
)
L
k
(
x
)
−
k
L
k
−
1
(
x
)
)
.
{\displaystyle L_{k+1}(x)={\frac {1}{k+1}}\left((2k+1-x)L_{k}(x)-kL_{k-1}(x)\right).}
ortogonal özellikli durumda üstel dağılım rastgele değişken ile olasılık ağırlık fonksiyonu ise; X ile eşdeğer gösterim
f
(
x
)
=
{
e
−
x
if
x
>
0
,
0
if
x
<
0
,
{\displaystyle f(x)=\left\{{\begin{matrix}e^{-x}&{\mbox{if}}\ x>0,\\0&{\mbox{if}}\ x<0,\end{matrix}}\right.}
buradan
E
[
L
n
(
X
)
L
m
(
X
)
]
=
0
whenever
n
≠
m
.
{\displaystyle E\left[L_{n}(X)L_{m}(X)\right]=0\ {\mbox{whenever}}\ n\neq m.}
üstel dağılım sadece gamma dağılımı değildir. önemli Bir polinomal dizi orthogonal olasılık ağırlık fonksiyonunun gama dağılımı için,α > −1,
f
(
x
)
=
{
x
α
e
−
x
/
Γ
(
1
+
α
)
if
x
>
0
,
0
if
x
<
0
,
{\displaystyle f(x)=\left\{{\begin{matrix}x^{\alpha }e^{-x}/\Gamma (1+\alpha )&{\mbox{if}}\ x>0,\\0&{\mbox{if}}\ x<0,\end{matrix}}\right.}
('Genelleştirilmiş Laguerre polinomu için Rodrigues tanımı ile verilen gama fonksiyonu içeren denklemi görebiliriz):
L
n
(
α
)
(
x
)
=
x
−
α
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
+
α
)
.
{\displaystyle L_{n}^{(\alpha )}(x)={x^{-\alpha }e^{x} \over n!}{d^{n} \over dx^{n}}\left(e^{-x}x^{n+\alpha }\right).}
Bazen uyarlanmış Laguerre polinomları olarak adlandırılır;genelleştirilmiş Laguerre polinomlarının α = 0 durumunda düzenlenmiş polinomları Basit Laguerre polinomları:
L
n
(
0
)
(
x
)
=
L
n
(
x
)
.
{\displaystyle L_{n}^{(0)}(x)=L_{n}(x).}
Genelleştirilmiş Laguerre polinomlarının özellikleri ve açık örnek [ değiştir | kaynağı değiştir ]
melez hipergeometrik fonksiyon tarafından tanımlanan Laguerre fonksiyonları ve Kummer dönüşümü
L
n
(
α
)
(
x
)
:=
(
n
+
α
n
)
M
(
−
n
,
α
+
1
,
x
)
=
(
n
+
α
n
)
∑
i
=
0
(
−
1
)
i
(
n
i
)
(
α
+
i
i
)
x
i
{\displaystyle L_{n}^{(\alpha )}(x):={n+\alpha \choose n}M(-n,\alpha +1,x)={n+\alpha \choose n}\sum _{i=0}(-1)^{i}{\frac {n \choose i}{\alpha +i \choose i}}x^{i}\,}
=
e
x
⋅
(
n
+
α
n
)
M
(
α
+
n
+
1
,
α
+
1
,
−
x
)
{\displaystyle =e^{x}\cdot {n+\alpha \choose n}M(\alpha +n+1,\alpha +1,-x)}
=
e
x
sin
(
n
π
)
sin
(
(
n
+
α
)
π
)
L
−
α
−
n
−
1
(
α
)
(
−
x
)
{\displaystyle ={\frac {e^{x}\sin(n\pi )}{\sin((n+\alpha )\pi )}}L_{-\alpha -n-1}^{(\alpha )}(-x)}
=
e
x
⋅
∑
i
=
0
(
−
1
)
i
(
α
+
n
+
i
n
)
x
i
i
!
.
{\displaystyle =e^{x}\cdot \sum _{i=0}(-1)^{i}{\alpha +n+i \choose n}{\frac {x^{i}}{i!}}.}
Eğer
n
{\displaystyle n}
bir tam sayı ise the function reduces to bir polinomun derecesi
n
{\displaystyle n}
. alternaif bir ifade
L
n
(
α
)
(
x
)
=
(
−
1
)
n
n
!
U
(
−
n
,
α
+
1
,
x
)
{\displaystyle L_{n}^{(\alpha )}(x)={\frac {(-1)^{n}}{n!}}U(-n,\alpha +1,x)}
içindeki Kummer fonksiyonu'nun ikinci türü terimleridir .
Genelleştirilmiş Laguerre polinomunun derecesi
n
{\displaystyle n}
ise
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
(
−
1
)
i
(
n
+
α
n
−
i
)
x
i
i
!
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}(-1)^{i}{n+\alpha \choose n-i}{\frac {x^{i}}{i!}}}
(diferansiyasyon için Leibniz teoremi tarafından uygulanan Rodrigues' formülü ile eşdeğer eldesi.)
İlk birkaç genelleştirilmiş Laguerre polinomları:
L
0
(
α
)
(
x
)
=
1
{\displaystyle L_{0}^{(\alpha )}(x)=1}
L
1
(
α
)
(
x
)
=
−
x
+
α
+
1
{\displaystyle L_{1}^{(\alpha )}(x)=-x+\alpha +1}
L
2
(
α
)
(
x
)
=
x
2
2
−
(
α
+
2
)
x
+
(
α
+
2
)
(
α
+
1
)
2
{\displaystyle L_{2}^{(\alpha )}(x)={\frac {x^{2}}{2}}-(\alpha +2)x+{\frac {(\alpha +2)(\alpha +1)}{2}}}
L
3
(
α
)
(
x
)
=
−
x
3
6
+
(
α
+
3
)
x
2
2
−
(
α
+
2
)
(
α
+
3
)
x
2
+
(
α
+
1
)
(
α
+
2
)
(
α
+
3
)
6
{\displaystyle L_{3}^{(\alpha )}(x)={\frac {-x^{3}}{6}}+{\frac {(\alpha +3)x^{2}}{2}}-{\frac {(\alpha +2)(\alpha +3)x}{2}}+{\frac {(\alpha +1)(\alpha +2)(\alpha +3)}{6}}}
ilk terimleri is (−1)n /n ! katsayı 'sıdır;
L
n
(
α
)
(
0
)
=
(
n
+
α
n
)
≈
n
α
Γ
(
α
+
1
)
;
{\displaystyle L_{n}^{(\alpha )}(0)={n+\alpha \choose n}\approx {\frac {n^{\alpha }}{\Gamma (\alpha +1)}};}
merkezindeki değer sabit terim 'dir.
hesaplamada kullanılan genelleştirilmiş Laguerre polinomları için açık formülü Horner metodu sağlar, bununla beraber, algoritma sonuçları kararlı ' değildir.
izlenen kararlı metod:
function LaguerreL(n, alpha, x) {
L1:= 0; LaguerreL:= 1;
for i:= 1 to n {
L0:= L1; L1:= LaguerreL;
LaguerreL:= ((2* i- 1+ alpha- x)* L1- (i- 1+ alpha)* L0)/ i;}
return LaguerreL;
}
L n (α ) ile n gerçel ,kökler kesinlikle pozitif (burada
(
(
−
1
)
n
−
i
L
n
−
i
(
α
)
)
i
=
0
n
{\displaystyle \left((-1)^{n-i}L_{n-i}^{(\alpha )}\right)_{i=0}^{n}}
bir Sturm zinciri 'dir), bütün
(
0
,
n
+
α
+
(
n
−
1
)
n
+
α
]
{\displaystyle (0,n+\alpha +(n-1){\sqrt {n+\alpha }}]}
aralık 'ı içindedir .
n
{\displaystyle n}
'in büyük değerleri için polinomun asimptotik davranışı
α
{\displaystyle \alpha }
sabit ve
x
>
0
{\displaystyle x>0}
, verilirse,
L
n
(
α
)
(
x
)
≈
n
α
2
−
1
4
π
e
x
2
x
α
2
+
1
4
cos
(
2
x
(
n
+
α
+
1
2
)
−
π
2
(
α
+
1
2
)
)
{\displaystyle L_{n}^{(\alpha )}(x)\approx {\frac {n^{{\frac {\alpha }{2}}-{\frac {1}{4}}}}{\sqrt {\pi }}}{\frac {e^{\frac {x}{2}}}{x^{{\frac {\alpha }{2}}+{\frac {1}{4}}}}}\cos \left(2{\sqrt {x\left(n+{\frac {\alpha +1}{2}}\right)}}-{\frac {\pi }{2}}\left(\alpha +{\frac {1}{2}}\right)\right)}
, and
L
n
(
α
)
(
−
x
)
≈
n
α
2
−
1
4
2
π
e
−
x
2
x
α
2
+
1
4
exp
(
2
x
(
n
+
α
+
1
2
)
)
{\displaystyle L_{n}^{(\alpha )}(-x)\approx {\frac {n^{{\frac {\alpha }{2}}-{\frac {1}{4}}}}{2{\sqrt {\pi }}}}{\frac {e^{-{\frac {x}{2}}}}{x^{{\frac {\alpha }{2}}+{\frac {1}{4}}}}}\exp \left(2{\sqrt {x\left(n+{\frac {\alpha +1}{2}}\right)}}\right)}
.[1] .
Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 22 19 Eylül 2009 tarihinde Wayback Machine sitesinde arşivlendi .", Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, ISBN 0-486-61272-4 .
B Spain, M G Smith, Functions of mathematical physics , Van Nostrand Reinhold Company, London, 1970. Chapter 10 deals with Laguerre polynomials.
Eric W. Weisstein, "Laguerre Polynomial 25 Şubat 2010 tarihinde Wayback Machine sitesinde arşivlendi .", From MathWorld – A Wolfram Web Resource.
George Arfken ve Hans Weber (2000). Mathematical Methods for Physicists . Academic Press. ISBN 0-12-059825-6 .
S. S. Bayin (2006), Mathematical Methods in Science and Engineering , Wiley, Chapter 3.