Kütle aktarımı

Vikipedi, özgür ansiklopedi
Gezinti kısmına atla Arama kısmına atla

Kütle aktarımı, genellikle buhar, faz, fraksiyon ya da bir bileşen olarak tanımlanan kütlenin bir yerden başka bir yere net hareketidir. Kütle aktarımı absorpsiyon, buharlaşma, kurutma, çökeltme, membran filtrasyonu ve damıtma gibi birçok işlemde gerçekleşmektedir. Kütle aktarımı farklı bilim dalları tarafından farklı işlem ve mekanizmalar için kullanılmaktadır. Kütle aktarımı ifadesi mühendislikte genellikle kimyasal türlerin fiziksel sistemler içinde difüz ve konvektif taşınımını kapsayan fiziksel işlemler için kullanılır.

Suyun bir havuzdan atmosfere buharlaştırılması, böbreklerde ve karaciğerde kanın arıtılması ve alkolün damıtılması genel kütle aktarımı işlemlerinden bazılarıdır. Endüstriyel işlemlerde kütle aktarımı işlemleri, kimyasal bileşenlerin distilasyon kolonlarında ayrılması, yıkama kuleleri ve sıyırıcılar gibi absorplayıcılar, aktif karbon yatakları ve sıvı-sıvı ekstraksiyonu gibi adsorplayıcılar endüstriyel işlemlerde kullanılan kütle aktarımı operasyonlarından bazılarıdır. Endüstriyel soğutma kulelerinde olduğu gibi, kütle aktarımı sıklıkla bir ek taşınım prosesi ile birleştirilir. Bu kulelerde sıcak suyun havayla temas halinde akışı sağlanır ve bu sayede ısı aktarımı ile kütle aktarımı beraber kullanılmış olur. Sıcak suyun bir kısmı su buharı şeklinde dışarı çıkartılarak soğutulur.

Astrofizik[değiştir | kaynağı değiştir]

Astrofizikte kütle aktarımı, yerçekimsel olarak bir cisme (genellikle bir yıldız) bağlanmış bir maddenin Roche lobunu doldurması ile genellikle yoğun ikinci bir cisme (beyaz cüce, nötron yıldızı veya kara delik) bağlanıp üstüne birikmesi sürecidir. Çift sistemlerde bu yaygın görülen bir olaydır ve çeşitli süpernova ile pulsarlarda önemli bir rol oynayabilir.

Kimya mühendisliği[değiştir | kaynağı değiştir]

Kimya mühendisliği problemlerinde kütle aktarımının geniş uygulama alanı vardır. Reaksiyon mühendisliğinde, ayırma mühendisliğinde, ısı aktarımı mühendisliğinde ve elektrokimya mühendisliği gibi kimya mühendisliğinin diğer birçok alt disiplininde kullanılmaktadır.[1]

Kütle aktarımı için itici güç genellikle kimyasal potansiyelde gerçekleşen farktır, ancak diğer bazı termodinamik değişimler de kütle akışına eşlik edebilir ve akışı sürdürebilir. Bir kimyasal tür, yüksek kimyasal potansiyeli olan alandan, düşük kimyasal potansiyeli olan alana doğru hareket eder. Böylece belirli bir kütle aktarımı işleminin maksimum teorik kapsamı, kimyasal potansiyelin tek biçimli olduğu nokta ile belirlenir. Tek fazlı sistemler için bu genel olarak faz boyunca düzgün bir konsantrasyon anlamına gelirken, çok fazlı sistemlerde ise sıvı-sıvı ekstraksiyonunda olduğu gibi, kimyasal türler genellikle diğer fazlar yerine tek bir faz seçer ve yalnızca kimyasal türlerin çoğu tercih edilen faza emildiğinde düzgün bir kimyasal potansiyele ulaşır.[2][3][4]

Termodinamik denge, belirli bir kütle aktarımı işleminin teorik kapsamını belirlerken, gerçek kütle aktarım hızı sistem içindeki akış profilleri ve her bir fazdaki kimyasal türlerin yayılma güçleri gibi ek unsurlara bağlıdır. Bu oran, bir prosesin tamamı için kütle aktarımı katsayılarının hesaplanması ve uygulanmasıyla belirlenebilir. Kütle aktarımı katsayıları Péclet sayısı, Reynolds sayısı, Sherwood sayısı ve Schmidt sayısı gibi boyutsuz sayılardır.

Isı, kütle ve momentum aktarımları arasındaki benzerlikler[değiştir | kaynağı değiştir]

Ana başlık: Taşınım olayı

Moment, ısı ve kütle transferi için yaygın olarak kullanılan yaklaşık diferansiyel denklemlerde kayda değer benzerlikler vardır. Hepsi de korunumlu büyüklüklerin bir akış alanı içinde taşınımına lineer yaklaşımlar sunduğundan, düşük Reynolds sayısında (Stokes akışı) akışkan akışı için Newton kanunu, Fourier'in ısı kanunu ve Fick'in kütle kanunu birbirlerine oldukça benzerdir. Yüksek Reynolds değerlerinde, kütle, ısı ve momentum aktarımı arasındaki benzerlik, Navier-Stokes denkleminin doğrusal olmaması nedeniyle (ya da esasen genel momentum korunumu denklemi) daha az kullanışlı hale gelmesine karşın, ısı ve kütle transferi arasındaki benzerlik kullanışlı kalır. Bu üç aktarım prosesi arasında benzerlikler geliştirerek, bu aktarımlardan herhangi bir tanesinden bir diğerinin tahminini mümkün kılmak için büyük çaba harcanmıştır.

Ayrıca bakınız[değiştir | kaynağı değiştir]

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ Electrochimica Acta 100 (2013) 78-84. https://doi.org/10.1016/j.electacta.2013.03.134
  2. ^ Welty, James R.; Wicks, Charles E.; Wilson, Robert Elliott (1976). Fundamentals of momentum, heat, and mass transfer (2 ed.). Wiley.
  3. ^ Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. (2007). Transport Phenomena (2 ed.). Wiley.
  4. ^ Taylor, R.; Krishna, R. (1993). Multicomponent Mass Transfer. Wiley.