Elektromanyetik radyasyon

Vikipedi, özgür ansiklopedi
Atla: kullan, ara
Mavi renk manyetik alanı, kırmızı renk elektrik alan temsilemekte, görüldüğü gibi manyetik alan, elektrik alan ve dalganın yayılma yönü birbirine diktir.

Elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın (genellikle EM radyasyon veya EMI olarak kısaltılır) bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ışık hızı ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla (artan frekansa ve azalan dalga boyuna göre)

Çeşitli organizmaların gözleri bu ışınların sadece küçük bir frekans aralığındaki ışınları algılayabilir. Buna “ışık” ya da “görülebilir tayf” denir.

Fizik[değiştir | kaynağı değiştir]

Teori[değiştir | kaynağı değiştir]

Görünür ışığın üç temel rengi olan kırmızı, yeşil ve mavinin dalga boyları

Elektromanyetik dalga kavramı ilk olarak James Clerk Maxwell tarafından ortaya atılmış ardından Heinrich Hertz tarafından doğrulanmıştır. Maxwell elektrik ve manyetik alanların dalga benzeri yapılarını ve simetrilerini açığa çıkaran alan dalga formu denklemleri elde etmiştir. Maxwell, ışığın ölçülen hızının, dalga denklemlerinden çıkan EM dalgaları hızları ile çakışık olmasından dolayı ışığı da bir elektromanyetik dalga olarak kabul etmiştir. Maxwell’in denklemlerine göre, hareketsiz bir elektrik yükü etrafında bir elektrik alan oluşturur. İvmeli hareket eden bir elektrik yüküyse oluşturduğu elektrik alana ek olarak manyetik alan oluşturur. Bu alanlar birbirlerine dik olarak salınırla ve EMI oluşur..

Özellikler[değiştir | kaynağı değiştir]

EMI fiziğinin adı elektrodinamiktir. Elektromanyetizma, elektrodinamik teorisi ile ilişkili bir fiziksel olaydır. Elektrik ve manyetik alanlar süperpozisyon ilkesine uygun olduklarından, herhangi bir parçacık ya da zamana bağlı elektrik veya manyetik alan aynı yerdeki mevcut alanlara vektör alan oldukları için vektörel olarak toplanırlar. Örneğin bir atom yapısı üzerinde seyahat halindeki bir EM dalgası yapının atomları içinde salınım indükler, böylece kendi EM dalgalarını yaymalarına sebep olur. Bu özellikler kırılma ve kırınım gibi çeşitli olaylara neden olur. Kırılma, bir dalganın bir ortamdan yoğunluğu farklı başka bir ortama geçerken hızını ve yönünü değiştirmesidir. Ortamın kırılma indisi kırılma derecesini belirler ve Snell yasası ile özetlenmiştir.

Işık da bir salınım olduğundan, vakum gibi doğrusal ortamda statik elektrik ya da manyetik alan boyunca seyahat etmekten etkilenmez. Ancak bazı kristaller gibi doğrusal olmayan ortamlarda ışık ve statik elektrik ve manyetik alanlar arasında Faraday etkisi ve Kerr etkisi gibi etkileşimler görülebilir.

Elektromanyetik ışımaların ortak özellikleri şunlardır;

  1. Birbirine dik elektrik ve manyetik alandan oluşurlar.
  2. Boşlukta düz bir doğrultuda yayılırlar.
  3. Hızları ışık hızına (2,99792458 × 108 m/s) eşittir.
  4. Geçtikleri ortama; frekanslarıyla doğru orantılı, dalga boylarıyla ters orantılı olmak üzere enerji aktarırlar
  5. Enerjileri; maddeyi geçerken, yutulma ve saçılma nedeniyle azalır, boşlukta ise uzaklığın karesiyle ters orantılı olarak azalır.

Dalga parçacık ikililiği[değiştir | kaynağı değiştir]

EMI hem dalga hem de parçacık özellikleri taşır . Her iki karakteristik çok sayıda deney ile onaylanmıştır. EM ışınım nispeten geniş zaman ölçeklerinde ve büyük mesafelerde incelendiğinde dalga karakteristiği daha belirgin, küçük zaman ölçeklerinde ve mesafelerde parçacık karakteristiği daha belirgindir. Örneğin EMI madde tarafından emildiğinde ve ilgili dalga boyunun küpü başına 1 den az foton düştüğünde parçacık benzeri özellikler daha açıktır. Işık emilimi durumunda düzensiz enerji birikimini deneysel gözlemlemek zor değildir. Açıkçası bu gözlemler tek başına ışığın parçacık davranışına kanıt değildir, o maddenin kuantum niteliğini yansıtır.

Tek fotonun kendi kendine parazitlenmesi gibi, aynı deneyde elektromanyetik dalgaların hem dalga hem de parçacık niteliklerinin ortaya çıktığı durumlar vardır. Gerçek tekil-foton deneyleri (kuantum optik duyarlılıkta) bugün lisans düzeyinde yapılabilmektedir. Bir tek foton girişimölçer üzerinden gönderildiğinde, her iki patikayı da izleyerek, dalgalar gibi kendisi ile etkileşir, karışır ancak ışıl çoğaltıcı ile ya da benzer hassas algılayıcılar ile ancak bir kez tespit edilebilir.

Dalga modeli[değiştir | kaynağı değiştir]

Bileşenlerine ayrışmış beyaz ışık

Işığın doğasının önemli bir yönü frekansıdır. Bir dalganın frekansı salınım hızıdır ve Hertz birimi ile ölçülendirilir. Bir Hertz saniyede bir salınıma eşittir. Işık genelde, toplamı bileşke dalgayı veren frekanslar tayfına sahiptir. Farklı frekanslar farklı kırılma açılarına maruz kalır.

Bir dalga peşi sıra tepelerden ve çukurlardan oluşur. İki çukur ya da tepe noktası arası mesafe dalga boyunu verir. Elektromanyetik tayf dalgaları boylarına göre sınıflandırılır, bina büyüklüğündeki radyo dalgalarından atom çekirdeği büyüklüğünde gamma ışınlarına kadar. Frekans şu denkleme göre dalga boyuna ters orantılıdır:

\displaystyle v=f\lambda

Denkleme göre, “v” dalga hızı (vakum ortamda hız “c” olur), “f” frekans, “λ” ise dalga boyudur. Dalgalar değişik ortamlar arasından geçerken hızları değişir ama frekansları aynı kalır. Girişim, iki ya da daha fazla dalganın çakışması sonucu yeni bir dalga şekli oluşmasıdır. Eğer alanlar aynı yönde bileşenler içeriyorsa yapıcı girişim, ayrı yönlerde ise yıkıcı girişim]] yaparlar. Elektromanyetik dalga enerjisi bazen “ışıyan enerji” olarak adlandırılır.

Parçacık Modeli[değiştir | kaynağı değiştir]

Elektromanyetik ışınımın foton denen farklı enerji paketleri (kuanta) olarak parçacık benzeri özellikleri vardır. Dalganın frekansı dalganın enerjisi ile doğru orantılıdır. Çünkü fotonlar enerji taşıyıcıları olarak davranırlar, yüklü parçacıklar tarafından yayılır ve soğurulurlar. Foton başına enerji Planck-Einstein denklemi ile hesaplanır: '

  • Formül ise şöyledir
\displaystyle E=hf

Burada “E” enerjiyi, “h” Planck sabitini, “f” ise frekansı temsil eder. Bu foton-enerji ifadesi ortalama enerjisi Planck yayılım yasasını elde etmek için kullanılan daha genel bir elektromanyetik osilatörün enerji seviyelerinin özel bir durumudur. Bu enerji seviyesinin düşük sıcaklıkta eşdağılım prensibi ile tahmin edilenden kesin bir farkla ayrıldığı gösterilebilir. Bu eşdağılım hatası düşük sıcaklıklardaki kuantum etkisinden dolayıdır.

Bir foton bir atom tarafından soğurulduğunda bir elektronunu uyararak onu daha yüksek onu daha yüksek bir enerji seviyesine çıkartır. Eğer enerji yeterince yüksekse yüksek enerji seviyesine zıplayan elektron çekirdeğin pozitif çekiminden kurtulup atomdan kurtulabilir, buna fotoelektrik etki denir. Tersine bir elektron daha düşük enerji seviyesine indiğinde enerji farkı kadar foton yayar. Her element, atomların içindeki elektronların enerji seviyeleri ayrı olduğundan, kendi frekansında yayar ve soğurur.

Bütün bu etkiler birlikte yayılım ve soğurma tayfını açıklar. Soğurma tayfında koyu bantlar karışık ortamdaki atomların değişik frekanstaki ışığı soğurmasından kaynaklanmaktadır. Işığın geçtiği ortamın bileşimi soğurma tayfının yapısını belirler. Örneğin uzak bir yıldızın yaydığı ışıktaki koyu bantlar yıldızın atmosferindeki atomlardan kaynaklanır. Bu bantlar atom içinde izin verilen enerji seviyelerine karşılık gelir. Benzer bir durum yayım için de oluşur. Elektronlar daha düşük enerji seviyelerine indiklerinde bu düşüşü temsil eden bir tayf yayılır. Bu durum, bulutsu yayılım tayfında kendini gösterir. Bugün bilim adamları bu durumu yıldızların hangi elementlerden oluştuklarını bulmak için kullanmaktadırlar. Ayrıca aynı durum tayfın kırmızıya kayma (redshift) yönteminde kullanılarak yıldızların uzaklıklarını hesaplamada kullanılır.

Yayılma Hızı[değiştir | kaynağı değiştir]

Ana madde: Işık hızı

İvmelenen herhangi bir elektrik yükü ya da herhangi bir değişen manyetik alan EMI üretir. Herhangi bir kablo (ya da anten gibi herhangi bir iletken) alternatif akım ilettiğinde, elektromanyetik ışınım akımla aynı frekansta yayılır. Kuantum seviyesinde ise elektromanyetik ışınım yüklü parçacığın dalga paketi dalgalandığında ya da ivmelendiğinde oluşur. Durağan haldeki yüklü parçacıklar hareket etmez ama bu hallerin birbirleriyle çakışması (süper pozisyonu) yüklü parçacığın kuantum halleri arasında ışınımsal geçiş (radiative transition) durumuna sebep olur.

Elektro manyetik ışınım koşullara bağlı olarak dalga ya da parçacık davranışı gösterir. Dalga durumunda ışınım hızı (ışık hızı), dalga boyu ve frekansı ile karakterize edilir. Parçacık olarak ele alındığında (foton), her parçacığın dalganın frekansı ile ilişkili enerjisi vardır. Bu enerji Planck’ın E=hf ilişkisinden bulunur. Burada “E” fotonun enerjisi, h=6.626 x 10-34 Js ise Planck sabitidir, “f” ise dalganın frekansını simgeler.

Bir kurala koşullar ne olursa olsun uyulur: vakum içindeki EM ışınım gözlemciye göre, gözlemcinin hızı ne olursa olsun, her zaman ışık hızında yol alır. (Bu gözlem Albert Einstein’ın özel görelilik kuramını geliştirmesini sağlamıştır.) Bir ortamda (vakum dışında), hız faktörü ve kırılma indisi frekansa ve uygulamaya bağlı olarak dikkate alınır. Her ikisi de vakumda hızlanan bir ortamın hız oranıdır.

Elektromanyetik tayf[değiştir | kaynağı değiştir]

EM dalgalar dalga boylarına göre radyo dalgaları, mikrodalga, kızılötesi, görünür ışık, morötesi, X-ray ve Gama ışını olarak ayrılırlar.

EM Spectrum Properties edit tr.svg

EMI nın maddeyle etkileşimi[değiştir | kaynağı değiştir]

EMI nın maddeyle etkileşimi üç şekilde olur: yansıma, soğurma ve maddeyi geçebilme (aktarma) . Bu etkileşimi EMI nın dalga boyları belirler. Radyo dalgaları, radyo antenleriyle alınabilir. Mikrodalgalar bazı maddeleri ısıtabilmektedir. Görülebilir ışık, görme hücrelerini (çubuk ve koni) etkileyecek boyuttadır. Morötesi ışın ve X ışını ise atom ve atom altı parçacıklarla etkileşir.

Görülebilir ışık fotonu maddeye çarptığında madde uyarılır ve foton, maddenin moleküler yapısına göre değişen diğer bir ışık fotonu şeklinde yansıtılır. Bir madde, günışığında eğer kırmızı görülüyorsa, bu madde gün ışığındaki kırmızı dışında tüm görülebilir ışık fotonlarını soğurur, yalnınca uzun dalga boylu olan kırmızı ışığı yansıtır.

Görülebilir ışığı geçiren maddeler saydam (transparent), yarı geçirgen maddeler translusent, geçirmeyen maddeler ise opak olarak adlandırılır. Radyolojide kullanılan tanısal amaçlı X-ışınını fazla geçiren vücut yapıları (akciğerler, yağ dokusu gibi) radyolusent, az geçiren vücut yapıları (kemik, kalsifikasyon gibi) ise radyoopaktır.

Ayrıca bakınız[değiştir | kaynağı değiştir]