Kovaryans matrisi

Vikipedi, özgür ansiklopedi
Atla: kullan, ara
Merkezi noktası (1 , 3) olan ve yaklaşık (0,878,0,778) yönde standart sapma değeri 3 ve ona dikey ortogonal yönde 1 olan bir çokdeğişirli normal dağılım. x ve y ortakca değiştikleri için, 'x ve y kısım varyansları bu dağılımı tam olarak tanımlamamaktadır ve tüm tanımlama için (2 x 2) dereceli bir kovaryans matrisi verilmesi gerekir. Grafikteki okların yönleri bu kovaryans matrisinin eigenvektörlerini göstermektedir. (Bunlar karşıt eigendeğerlerin kare kökleri ile yeniden boyutlandırılmışlardır.)

'Kovaryans matrisi (veya varyans-kovaryans matrisi veya varyans matrisi) istatistik ve olasılık kuramı bilimlerinde veya bir rassal vektör'ün elemanları arasındaki kovaryansların bir matematik matris olarak ifade edilmesidir. Kovaryans matrisi , bir skaler-değerli rassal değişken için varyans kavramının, çoklu değişken bulunması halinde çoklu boyutlara doğal olarak genelleştirilmesidir.

Tanımlama[değiştir | kaynağı değiştir]

Eğer şu sütun vektörü içine

 \mathbf X = \begin{bmatrix}X_1 \\  \vdots \\ X_n \end{bmatrix}

giren değişkenlerin her biri sonlu varyansı olan rassal degişken iseler, o halde (ij) elemanı bir kovaryans olan matris Σ kovaryans matrisi olur:


\Sigma_{ij}
= \mathrm{cov}(X_i, X_j) = \mathrm{E}\begin{bmatrix}
(X_i - \mu_i)(X_j - \mu_j)
\end{bmatrix}

burada


\mu_i = \mathrm{E}(X_i)\,

X vektöründeki iinci değişkenin beklenen değeri olur. Diğer bir deyişle, elimizde şu vardır:


\Sigma
= \begin{bmatrix}
 \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \\
 \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ \\
 \vdots & \vdots & \ddots & \vdots \\ \\
 \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)]
\end{bmatrix}.

Bu matrisin tersi' olan matris, yani \Sigma^{-1}, ters kovaryans matrisi ya da konsantrasyon matrisi veya kesinlik matrisi olarak anılır.[1] Bu "ters kovaryans matrisi"nın elemanları kısmî korelasyonlar veya kısmî varyanslara yapılan atıflarla açıklanabilirler.

Kulanılan notasyonlarda ve isimlendirmede çatışmalar[değiştir | kaynağı değiştir]

İstatistik literatüründe bu kavram için isimlendirme tek-örnek olarak degil, değişik şekillerde yapılmaktadır:

  • Amerikan olasılık teoricisi William Feller'in takipcileri bu matrise X rassal vektörünün Varyans matrisi adını verirler; çünkü bu tek-boyutlu varyans kavramının doğal olarak daha yüksek boyutlarda genelleştirilmesidir.
  • Diğerleri bu matris covaryans matris olarak isimlendirirler, cunku bu X matrisinin skaler parcalarinin arasinda olan kovaryanslarin matrisidir.

Böylece


\operatorname{var}(\textbf{X})
=
\operatorname{cov}(\textbf{X})
=
\mathrm{E}
\left[
 (\textbf{X} - \mathrm{E} [\textbf{X}])
 (\textbf{X} - \mathrm{E} [\textbf{X}])^\top
\right].

Ama iki vektör arasındaki karşılıklı-kovaryans için notasyon sadece tek bir standarta uyar:


\operatorname{cov}(\textbf{X},\textbf{Y})
=
\mathrm{E}
\left[
 (\textbf{X} - \mathrm{E}[\textbf{X}])
 (\textbf{Y} - \mathrm{E}[\textbf{Y}])^\top
\right].

Özel var notasyonu William Feller'in An Introduction to Probability Theory and Its Applications, adlı eserinde kullanılır; ama her iki alternatif notasyon da standart olarak kullanılmaktadır; bu iki değişik başta açılanıp öğrenilmekte ve anlayıp kullananlar için bir anlam karışıklığına neden olmamaktadır.

\Sigma matrisi ise çok zaman varyans-kovaryans matris olarak anılır; çünkü bu matrisin diagonal elemanları varyanslardır.

Özellikleri[değiştir | kaynağı değiştir]

X p-boyutlu bir rassal degisken ve Y q-boyutlu bir rassal degisken icin \Sigma=\mathrm{E} \left[ \left( \textbf{X} - \mathrm{E}[\textbf{X}] \right) \left( \textbf{X} - \mathrm{E}[\textbf{X}] \right)^\top \right] ve  \mu = \mathrm{E}(\textbf{X}), olarak verilmisse, su temel ozellikler bulunmaktadir:

  1.  \Sigma = \mathrm{E}(\mathbf{X X^\top}) - \mathbf{\mu}\mathbf{\mu^\top}
  2.  \Sigma \, bir positif semi-definit matrisdir.
  3.  \operatorname{var}(\mathbf{A X} + \mathbf{a}) = \mathbf{A}\, \operatorname{var}(\mathbf{X})\, \mathbf{A^\top}
  4.  \operatorname{cov}(\mathbf{X},\mathbf{Y}) = \operatorname{cov}(\mathbf{Y},\mathbf{X})^\top
  5.  \operatorname{cov}(\mathbf{X}_1 + \mathbf{X}_2,\mathbf{Y}) = \operatorname{cov}(\mathbf{X}_1,\mathbf{Y}) + \operatorname{cov}(\mathbf{X}_2, \mathbf{Y})
  6. Eger p = q, ise o zaman \operatorname{var}(\mathbf{X} + \mathbf{Y}) = \operatorname{var}(\mathbf{X}) + \operatorname{cov}(\mathbf{X},\mathbf{Y}) + \operatorname{cov}(\mathbf{Y}, \mathbf{X}) + \operatorname{var}(\mathbf{Y})
  7. \operatorname{cov}(\mathbf{AX}, \mathbf{B}^\top\mathbf{Y}) = \mathbf{A}\, \operatorname{cov}(\mathbf{X}, \mathbf{Y}) \,\mathbf{B}
  8. Eğer \mathbf{X} ve \mathbf{Y} birbirlerinden bağımsız iseler, o halde

\operatorname{cov}(\mathbf{X}, \mathbf{Y}) = 0

burada \mathbf{X}, \mathbf{X}_1 ve \mathbf{X}_2 rassal p×1 derecede vektör, \mathbf{Y} rassal q×1 derecede vektör, \mathbf{a} ise q×1 derecede vektör, \mathbf{A} ve \mathbf{B} (q×p) dereceli matrislerdir.

Bu kovaryans matrisi değişik alanlarda uygulamaları bulunan bir matematik araçtır. Bu matrisden bir transformayon matrisi çıkartılabilir ve bu veride bulunan bütün korelasyonların elimine edilebilmesini mümkun kılar. Bu transformasyon matrisi bularak tüm korelasyonları elimine etme analizine temel bileşenler ("principal components) analizi adı verilir.

Bir doğrusal operatör olarak[değiştir | kaynağı değiştir]

Hangi matrisler kovaryans matrisleridir?[değiştir | kaynağı değiştir]

Uygun bir kovaryans matrisi nasıl bulunur[değiştir | kaynağı değiştir]

Bazı uygulamalarda (örneğin sadece kısmen gözumlenen verilerden veri modeli kurmada) bir verilmiş belirli (gözümlenen kovaryanslardan oluşmuş) bir simetrik matrise "en yakın" kovaryans matrisi bulmak istenebilir. 2002 yılında, Higham [2] "ağırlıklı Frobenius normu" kullanarak en yakınlılık kavramını formalize etmiştir ve böylece en yakın kovaryans matrisi bulmak için gereken yöntemi vermistir.

Kompleks rassal vektorler[değiştir | kaynağı değiştir]

Kestirim[değiştir | kaynağı değiştir]

Bir çoklu değişirli normal dağılım için kovaryans matrisinin maksimum-olabilirlilik kestrimcisininin elde edilmesi, belki çok zeki bir ince tranformasyon ile kolayca yapılabilir. Bakın kovaryans matrisleri kestimi

Olasılık yoğunluk fonksiyonu[değiştir | kaynağı değiştir]

Bir n tane korelasyonlu rassal değişken dizisi icin olasılık yoğunluk fonksiyonu, n dereceli bir Gauss-tipi vektor olan birlesik olasılık fonksiyonu olup Maksimum olabilirlik maddesinde aciklanmaktadir.

Dipnotlar[değiştir | kaynağı değiştir]

  1. ^ Wasserman, Larry (2004), All of Statistics: A Concise Course in Statistical Inference (İngilizce)
  2. ^ Higham, Nicholas J. ""Computing the nearest correlation matrix—a problem from finance" IMA Journal of Numerical Analysis, Cilt 22 No.3 say.329

Ayrıca bakınız[değiştir | kaynağı değiştir]

Dış kaynaklar[değiştir | kaynağı değiştir]