Gül (matematik)

Vikipedi, özgür ansiklopedi
Atla: kullan, ara
7 yapraklı gül (k=7)
8 yapraklı gül (k=4)
Bazı rasyonel k değerlerine karşılık gelen güller (k=n/d)

Matematikte gül veya rodonea (Yunanca gül anlamına gelen rodon kelimesinden), kutupsal koordinat sisteminde çizilmiş bir sinüs ya da kosinüs eğrisine denir. Gül eğrisi, aşağıdaki kutupsal denklemle ifade edilir:

\, r = a\cos(k\theta).

Bu denklemde kosinüs yerine sinüs de yazılabilir, ortaya çıkacak eğri kosinüs eğrisinin π/2k radyan kadar döndürülmüş bir kopyası olacaktır. Bunun sebebi de sinüs ve kosinüs arasındaki şu ilişkidir:

\sin(k \theta) = \cos\left( k \theta - \frac{\pi}{2} \right) = \cos\left( k \left( \theta-\frac{\pi}{2k} \right) \right).

Gül eğrisi aynı zamanda, orijinden çıkan ve sabit açısal hızla dönmekte olan bir doğrunun üzerinde sinüs/kosinüs dalgası şeklinde ileri geri hareket eden bir noktanın izleyeceği eğridir.

Denklemdeki a değeri gülün şeklini değil, bir bütün olarak büyüklüğünü (yani yaprakların uzunluğunu) etkiler.

Eğer k bir tek sayı ise, gül şeklinin tamamen çizilmesi için θ'nın π uzunluğunda bir interval boyunca ilerlemesi yeterlidir, ve ortaya çıkacak gül k yapraklı olacaktır. Yok eğer k bir çift sayı ise, şeklin tamamen çizilmesi için θ'nın 2π uzunluğunda bir intervalde ilerlemesi gerekir, ve ortaya çıkacak gül 2k yapraklı olacaktır. Burada ilginç bir nokta şudur: Herhangi bir tek sayının iki katı kadar (2, 6, 10, 14, 18, vs.) yaprağı olan bir gül çizilemez.

Elbette k bir tam sayı olmak zorunda değildir, rasyonel ya da irrasyonel de olabilir. Eğer k bir rasyonel sayı ise, ortaya çıkan eğri topolojik anlamda kapalı ve sonlu uzunlukta olacaktır. k irrasyonel ise, eğri kapalı olmayacak, ve uzunluğu sonsuz olacaktır.

Bu eğrilere gül ismini veren, 18. yüzyıl İtalyan matematikçisi Guido Grandi'dir.[1]

Alan[değiştir | kaynağı değiştir]

Eğer k bir çift sayı ise,

\, r = a\cos(k\theta)

eşitliğiyle tanımlanan gülün alanı, şöyle hesaplanabilir:

\int_{0}^{2\pi}\int_{0}^{a\cos(k\theta)} r \,dr d\theta = \frac{1}{2}\int_{0}^{2\pi}(a\cos (k\theta))^2\,d\theta = \frac {a^2}{2} \left(\pi + \frac{\sin(4k\pi)}{4k}\right) = \frac{\pi a^2}{2}.

Benzer şekilde, eğer k bir tek sayı ise, gülün alanı şu olacaktır:

\int_{0}^{\pi\,}\int_{0}^{a\cos(k\theta)} r \,dr d\theta = \frac{1}{2}\int_{0}^{\pi}(a\cos (k\theta))^2\,d\theta = \frac {a^2}{2} \left(\frac{\pi}{2} + \frac{\sin(2k\pi)}{4k}\right) = \frac{\pi a^2}{4}.

Dikkat edilirse, alan formüllerinde k gözükmemektedir, yani güllerin alanları k'nın değerinden bağımsızdır. Ayrıca, çift yapraklı güllerin alanı, tek yapraklı güllerin alanının iki katıdır.

Notlar[değiştir | kaynağı değiştir]

  1. ^ ""Rhodonea Curves"" (İngilizce). http://www-history.mcs.st-andrews.ac.uk/Curves/Rhodonea.html. Erişim tarihi: 25 Temmuz. 

Dış bağlantılar[değiştir | kaynağı değiştir]