Euler integrali

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

Matematik'te, Euler integral 'inin iki tipi vardır:

  1. Euler integral'inin ilk türü: Beta fonksiyonu
    \mathrm{\Beta}(x,y)= \int_0^1t^{x-1}(1-t)^{y-1}\,dt =\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
  2. Euler integral 'inin ikinci türü: Gama fonksiyonu'dur
    
\Gamma(z) = \int_0^\infty  t^{z-1}\,e^{-t}\,dt

Pozitif tamsayı m ve n için

\mathrm{\Beta}(n,m)= {(n-1)!(m-1)! \over (n+m-1)!}={n+m \over nm{n+m \choose n}}
\Gamma(n) = (n-1)! \,

Ayrıca bakınız[değiştir | kaynağı değiştir]