δ¹³C

Vikipedi, özgür ansiklopedi
Atla: kullan, ara

Jeokimya, paleoklimatoloji ve paleo okyanus bilminde δ13C bir izotopik imza değeridir, karbonun kararlı izotoplarının oranı 13C:12C 'nin binde (‰) olarak ifadesidir:

\delta ^{13}C = \Biggl( \frac{\bigl( \frac{^{13}C}{^{12}C} \bigr)_{ornek}}{\bigl( \frac{^{13}C}{^{12}C} \bigr)_{standard}} -1 \Biggr) * 1000\ ^{o}\!/\!_{oo}

Burda standart, belirlenmiş bir referanstır, okyanus suyu gibi.

δ13C, biyolojik karbon fiksasyonu, organik karbonun gömülmesi ve bitki tipine bağlı olarak zamana göre değişir.

δ13C'yi ne etkiler?[değiştir | kaynağı değiştir]

Metan gazının δ13C çok düşüktür: biyolojik kaynaklı metan için -60‰, deniz dibi sıcak su kaynaklarında üretilen termojenik metan için -40‰. Metanla kompleksleşebilen klatratların büyük miktarda çevreye salınmasının (Paleosen'den Eosen devre geçiş sırasında olduğu gibi) global δ13C değerlerine büyük etkisi olabilir.[1]

Daha sık olarak, atmosfer ve sudaki karbon dioksitin organik bileşiklere dönüşmesinin (buna birincil üretim denir; bu süreç başlıca fotosentez yoluyla olur) ve organik maddelerin gömülmesindeki değişmeler bu oranı etkiler. Organizmalar bünyelerine yeni organik bileşikler katarken 12C'yi 13C'ye tercih ederler ve δ13C imzaları -13‰ ile -33‰ arasında değişir, bu canlıların kullandığı metabolik yola bağlı olarak.

Birincil üretimdeki bir artış δ13C değerinin artmasına neden olur çünkü bitkilerin yapısına daha çok 12C dahil olur. Organik maddeler tortu olarak toprağa veya deniz dibine gömülünce sistemdeki serbest 12C azalır çünkü organik karbonda daha fazla 12C vardır.

Önemli jeolojik δ13C değişimleri[değiştir | kaynağı değiştir]

C3 ve C4 bitkilerinin izotopik imzaları farklıdır (-28‰ ve -13‰), bu yüzden C4 bitkilerin zamana göre doğadaki yaygınlıkları δ13C kayıtlarından anlaşılabilir.[2]

Kitlesel soy tükenmeleri çoğu zaman δ13C'de bir artma ile kendini gösterir, bunun nedeninin birincil üretkenlikte bir azalma olduğu tahmin edilmektedir.

Geç Devoniyen dönemde büyük kara bitkilerinin evrimleşmesi ile organik karbon gömülmesini artmış ve bunun sonucu δ13C düşmüştür.

Biyokimya[değiştir | kaynağı değiştir]

Canlıların 12C'yi 13C tercih etmelerinin nedeni, 12C'nin daha hafif olmasıdır. Kimyasal tepkimelerde genelde 12C'yle kurulmuş bir bağ daha kolay kırılabilir, çünkü bağı koparmak için daha az enerji gereklidir. Bazı enzimler özellikle kopardıkları kimyasal bağın bir ucunda 12C olmasına duyarlıdır. Pirüvat dehidrojenaz bu enzimlerden biridir, ikinci karbonu 12C olan pirüvat moleküllerini tercih eder. C3 veya C4 yoluyla karbon fiksasyonu olduktan sonra bu bitkileri yiyen hayvanlarda δ13C değeri bitkideki değierden farketmez, yani bitkisel kökenli organik bileşikler hayvan metabolizmasına girdikten sonra 12C'ye olan tercih değişmez.[3]

Ayrıca bakınız[değiştir | kaynağı değiştir]

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ Panchuk, K.; Ridgwell, A.; Kump, L.R. (2008). "Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison". Geology 36 (4): 315–318. doi:10.1130/G24474A.1. 
  2. ^ Retallack, G.J. (2001). "Cenozoic Expansion of Grasslands and Climatic Cooling". The Journal of Geology 109 (4): 407–426. doi:10.1086/320791.  (İngilizce)
  3. ^ Steve Mack (2003). "Why do living organisms exhibit a preference for Carbon-12 over Carbon-13?". http://www.madsci.org/posts/archives/2003-06/1055532737.Bc.r.html. Erişim tarihi: 8 Nisan 2009.